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Abstract

Generative models are well known in the domain of sta-
tistical pattern recognition. Typically, they describe the
probability distribution of patterns in a vector space. In
contrast, very little work has been done with generative
models of graphs because graphs do not have a straight-
forward vectorial representation.

In this paper we examine the problem of creating gener-
ative distributions over sets of graphs. We model the vari-
ation in a set of graphs by observing which subgraphs are
present in each graph and how these subgraphs are con-
nected. By performing clustering on the subgraphs we can
group those with similar structure. Distributions are then
defined on the clusters present in each graph, which sub-
graphs are present in each cluster and the way subgraphs
are connected. New graphs can then be generated by sam-
pling from the distributions. We show the utility of our ap-
proach on synthetically generated point sets and point sets
derived from real-world imagery of articulated objects.

1 Introduction

Generative models are well known in the domain of sta-
tistical pattern recognition. Typically, they describe the
probability distribution of patterns in a vector space. The in-
dividual patterns are defined by vectors and so the resulting
features of the pattern are well defined. Graphs are not nat-
urally represented in a vector space since there is no natural
labelling of the vertices of the graphs - different labellings
lead to different representations of the graph structure.

This problem can be overcome by computing the corre-
spondences between graphs in a set. This process allows
graph similarity[7] to be assessed. For example, Gold and
Rangarajan[2] describe a method of graph matching by en-
forcing two-way assignment constraints.

The problem of describing a set of graphs via a repre-
sentative has been addressed by Jiang et al[3, 4], who de-

fine the median of a set of graphs to be the graph which
has the minimum sum-of-distances to all the graphs in the
set. This definition is equivalent in a sense to the mean of
a set of points. Ferrer et al[1] describe a spectral method to
compute the median graph.

There are a number of methods in the literature for rep-
resenting graphs in a vector space. Kosinov and Caelli[5]
have used properties of the spectral decomposition to repre-
sent graphs and Shokoufandeh et al[9] has used eigenvalues
of shock graphs to index shapes. Wilson and Hancock have
shown[11] how permutation invariant polynomials can be
used to derive features which describe graphs and make full
use of the available spectral information. However, it is dif-
ficult to reconstruct graphs from these representations.

Luo, Wilson and Hancock[6] directly exploit the adja-
cency matrix by converting it into a long-vector. An initial
correspondence step is used to align the adjacency matrix
and the long-vectors are analysed using the eigenmodes.
Xiao and Hancock[12] have used the eigenvalues and eigen-
vectors of the heat kernel to construct the requisite vec-
tors before constructing a Normal distribution in the vector
space. While both of these methods construct generative
models over the vector space, neither is able to produce re-
constructed graphs satisfactorily.

White and Wilson [10] show how to construct a gener-
ative model by defining distributions on the vector spaces
of the eigenvalues and eigenvectors of graphs. By creating
separate distributions for the eigenvalues and eigenvectors,
graphs can be generated that are similar to those in the sam-
ple set but also novel in structure.

In this paper we describe a parts based approach to gen-
erating graphs. We model the variation in a set of graphs by
observing which subgraphs are present in each graph and
how these subgraphs are connected. To generate new graphs
we can then sample from the distributions defined on the
subgraphs and connections between them. This approach
lends itself to graph types that are easily decomposed, for
example, graphs of chemical structures or point sets of ob-
jects. The algorithm excels on graphs with small groups



of densely connected vertices where the small groups are
sparsely connected. By decomposing the graphs we gain an
accurate model for these types of data.

2 Approach

We describe our algorithm in two sections. First we dis-
cuss how the sample graphs are prepared for use with the
model, then we describe the models themselves and how
we can sample from them to generate a new graph.

Preparing the Data for use with the Models

The algorithm commences from a sample set of non-
directed graphs G which may or may not be weighted. We
compute the adjacency matrix representation Ak for each
graph Gk in the sample set.

We seek a partitioning of each sample graph such that
each sub-structure i present in the graph is represented by a
subgraph adjacency matrix Ski. Each subgraph adjacency
matrix represents the subgraph vertices in the partition and
the edges wholly within the partition. Clearly this process
fails to capture information about the way sub-structures
are connected to each other, so we store cut connections
between each pair of sub-structures (or more precisely sub-
graphs) Ski and Skj in a connection matrix Ckij .

This partitioning process is quite flexible and adaptable
to the specific data set the process is employed on. For ex-
ample, it can be done using conventional methods such as
Shi & Malik’s normalized cut [8] or a more application spe-
cific method. The number of partitions can be chosen by
visual inspection or by imposing a threshold on the parti-
tioning process.

To simplify working with these different sized subgraphs
and connection matrices we find the size of the largest sub-
graph (n by n) and then pad all other subgraphs Ski and
connection matrices Ckij with zeros so they are n by n in
size. The adjacency matrices Ak are also padded.

Next we cluster the subgraphs such that subgraphs be-
longing to the same cluster represent similar structure. This
information is used to organize the input of subgraphs and
connection matrices to the model. Furthermore, it allows us
to view the connections between subgraphs as connections
between clusters instead.

To cluster the subgraphs we compute the distance be-
tween every pair of subgraphs Ski and Skj using the
weighted graph matching approach of Gold & Rangarajan
[2]. These distances are stored in D(Ski, Skj) and the per-
mutation matrices for matching two subgraphs are recorded
in M(Ski, Skj). The distance matrix D is transformed into
an affinity matrix and Normalized Cut clustering is per-
formed on it. This results in each subgraph being assigned
to a cluster.

The number of cuts performed in the clustering step cor-
responds to the number of different structures in the sample
graphs that are needed for the generative model to accu-
rately convey the sample graph’s structures.

With the clusters of subgraphs to hand we compute a ref-
erence subgraph ωc for each cluster c that is chosen to be the
one with the smallest distance to all other subgraphs in clus-
ter c. We can then use ωc and the match matrices M to align
each subgraph to the reference subgraph for that subgraph’s
cluster. Since the vertices of each subgraph have been per-
muted the connection matrices must also be aligned. The
fully aligned and padded sample graphs are denoted Âk.

Constructing the Models and Generating new Graphs

In this section we describe how the models are defined for:
the clusters represented in a sample graph, the distribution
of subgraphs in a cluster and the connections between clus-
ters. Due to the clustering performed on the subgraphs we
can now speak about the connections between subgraphs
(the connection matrices) in terms of connections between
clusters instead.

To create the model of how subgraphs are connected,
the connection matrices of each Âk are stacked into a long
vector rk. The placement of each connection matrix in rk

is very important to ensure that the same cluster to cluster
connection matrices are always placed in the same location
in each rk. Therefore each rk stores connections between
all possible clusters even though some of these connections
may not exist for a particular sample graph.

If a sample graph should contain two or more subgraphs
from the same cluster then this is accommodated by allow-
ing as many locations in rk as are necessary to store all
the connection matrices associated with these two (or more)
subgraphs.

We then compute the mean r̄ and covariance Σr of the
long vectors R. With the covariance matrix to hand we per-
form an eigendecomposition resulting in two matrices, Φr

which contains the eigenvectors and Λr which contains the
eigenvalues. We now have the information needed about
the distribution of the connections between clusters in the
sample set.

To model the distribution of the subgraphs (i.e. which
sets of clusters are contained in each sample graph) we use
a Gibbs Sampler. To prepare the Gibbs Sampler for use we
must setup a number of binary states that indicate which
sample graph contains subgraphs from which cluster (let us
term this a cluster configuration). Again if two or more sub-
graphs from the same cluster are present in a sample graph
then this is recorded in the cluster configuration and taken
into account when generating a new configuration.

The distribution governing the subgraphs present in a
cluster is simple to define. We use a frequency selection
method. For example if there is one cluster that contains
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Figure 1. Graphs from the synthetic data set.

3 identical subgraphs then that subgraph is 3 times more
likely to be selected for that cluster in the new graph than a
subgraph that only appears once.

With the three distributions to hand we may now sam-
ple from them to generate a new graph. First we must find
a cluster configuration using the Gibbs Sampler. For each
cluster in the cluster configuration we choose a subgraph.
Lastly, we generate the connection matrices.

To generate the connection matrices we generate a new
set of connections between all cluster pairs then select the
connections that are required for our new graph. The gen-
erated set of connections between all cluster pairs is de-
noted rg and computed using the distribution of vectors in
R, rg = r̄ + Φrb. The parameter vector b is created by
sampling from the normal distribution with zero mean and
variance given by the diagonal elements in Λr. If a connec-
tion matrix between a particular pair of clusters is required
then it is retrieved and reshaped from the appropriate loca-
tion in rg .

Due to the continuous nature of the normal distribution
some noise in the connections might have been introduced
in generating rg . To resolve this we use thresholding to re-
move connections with very small weights. Furthermore,
if the sample graphs contained discrete connections then
thresholding will be required to recover discrete edges.

3 Results

We show the utility of our approach by applying it to
graphs constructed from point sets. Two data sets are used
in this section: the first set is constructed from syntheti-
cally generated point sets while the second set uses points
extracted from real-world images. We use point sets since
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Figure 2. Drawings of the graphs in the artic-
ulated object data set .

it provides a way to easily visualize both sample and gen-
erated graphs using either an MDS or optimization based
drawing technique.

Synthetic Data

Our synthetic data is constructed from 5 different small
point sets x1, ..., x5 each containing 15 points. The point
sets x1, ..., x5 are arranged in a 2D space to make the full
point set Xk. A small amount of noise is added to the points
in each Xk. Each point set xi will be represented by a clus-
ter in the algorithm and the way they are arranged will be
represented by the connection matrices. We compute the
Gabriel graph Sk for each point set Xk from which the algo-
rithm commences. The weights on the edges of the Gabriel
graph are set to the distance between the two vertices they
connect. The partitioning of each graph is accomplished
using Normalized Cut. MDS drawings of two of the four
sample graphs (S1 and S2) are shown in figure 1 along with
the positions of the small point sets.

Figure 1 also shows generated graphs G1 and G2. The
cluster configurations for these two graphs are the same as
the cluster configuration in S1 and S2. Notice that the con-
nections in G1 on the left of the subgraph indicated by x5

are identical to those in S1 and the connections on the right
are identical to those in S2. Also observe that the connec-
tions between x2 and x4 are different to those in any Sk

and are in fact a combination of the connections between
x2 and x4 in S1 and S2. This is an example of how the
connections between subgraphs can be statistically mixed.
Graph G2 has connections identical to S2 but different sub-
graphs have been chosen to represent some clusters. This is
clearly seen in the subgraph near x1.



Real-world Data

To show the utility of our approach on real world data we
use images of articulated objects. These objects have multi-
ple joints about which their various parts can move and are
therefore an ideal choice for our approach. Our approach
will partition the full object into its various parts and then
model the way the parts are connected.

We acquire point sets from the real world images through
a motion capture preprocessing step. Due to the more com-
plex graph structures present in this data we must employ
an optimization based drawing method.

The data set for this experiment consists of 18 images of
an object in different articulations. The Gabriel graphs con-
structed for two of these images are shown on the top row
of figure 2. The bottom row shows the optimization based
drawing of the graph above it, S1 and S2. Also shown in
this figure is a generated graph, G1. Figure 3 shows a PCA
projection of the connection matrices for each graph in the
sample set and 100 generated graphs. Each sample graph is
depicted by its Gabriel graph and the generated graphs are
marked with crosses. The generated graphs span the whole
space of the sample graphs. The graphs shown in figure
2 are labeled correspondingly in the PCA plot. Notice the
locations of S1, S2 and G1 in the PCA plot and the similar-
ities of their structure when drawn in figure 2. On the plot,
similar graphs are grouped quite tightly as is the case of the
graphs near S2. The variation cause by the bottom articu-
lation of the object does not affect the graph as strongly as
the upper two articulations. This is why the graphs grouped
around S2 have varying bottom articulations but the top two
articulations are the same. Similar trends can be observed
for the other groups of graphs in the sample set.

4 Conclusions

In this paper we have shown how to construct a parts
based model of a set of graphs that allows new graphs to be
generated. This is accomplished by subdividing each graph
into a number of subgraphs and then basing the model on
these subgraphs and the connections between them. The
approach is effective on data types that lend themselves to
a partitioning process, namely chemical structures, point
sets of articulated objects and point sets of scenes. New
graphs are generated by sampling from three different dis-
tributions; firstly to find the configuration of clusters that
will be present in the new graph, secondly to choose which
subgraphs will represent each cluster and finally to generate
the connections between the clusters chosen. We show the
utility of our approach on synthetically generated data and
real-world data. Both data sets take the form of point sets
since this provides a way to easily visualize the generated
graphs.
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Figure 3. A PCA projection of graphs in the
articulated object data set.
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