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Abstract

Generative models are well known in the domain of sta-
tistical pattern recognition. Typically, they describe the
probability distribution of patterns in a vector space. The
individual patterns are defined by vectors and so the indi-
vidual features of the pattern are well defined. In contrast,
very little has been done with generative models of graphs.
Graphs are not naturally represented in a vector space since
there is no natural labelling of the vertices of the graphs -
different labellings lead to different representations of the
graph structure. Because of this, simple statistical quanti-
ties such as mean and variance are difficult to define for a
group of graphs. While we can define statistical quantities
of individual edges, it is not so straightforward to define
how sets of edges in graphs are related. The spectral de-
composition of a graph can be used to extract information
about the relationship of edges and parts in a graph. In
this paper we look at the problem of mixing graphs by using
the spectral representation of a graph as an intermediate
step. The spectral representation allows us to mix different
structural features from each of the graphs to create new
combinations. We can also define an averaging process on
the spectral representations which generates a graph close
to the graph median.

1 Introduction

Generative models are well known in the domain of sta-
tistical pattern recognition. Typically, they describe the
probability distribution of patterns in a vector space. The
individual patterns are defined by vectors and so the indi-
vidual features of the pattern are well defined. Graphs are
not naturally represented in a vector space since there is
no natural labelling of the vertices of the graphs - differ-
ent labellings lead to different representations of the graph
structure. Because of this, simple statistical quantities such
as mean and variance are difficult to define for a group of

graphs.
The key problem in utilising graph representations lies

in measuring their structural similarity. This is a difficult
problem because there is no explicit labelling of the parts,
and typically correspondences must be established before
similarity can be assessed. As an example, Sanfeliu and
Fu[8] employed the concept of graph edit distance, giving
separate edit costs for relabeling, insertion and deletion on
both nodes and edges. A search is necessary to locate the
set of operations which have minimal cost. More recently,
Bunke[1, 2] has established a relationship between the min-
imum graph edit distance and the size of the maximum com-
mon subgraph. The graph edit distance provides a well de-
fined way of measuring the similarity of two graphs.

Spectral graph theory provides another approach to the
problem of graph similarity[3]. Eigenvector methods have
been used for grouping via pairwise clustering. Exam-
ples include Shi and Malik’s [10] iterative normalised cut
method which uses the Fiedler (i.e. second) eigenvector
for image segmentation and Sarkar and Boyer’s use of the
leading eigenvector of the weighted adjacency matrix [9].
Graph spectral methods have also been used to correspon-
dence analysis. For example, Umeyamas method[12] al-
lows the matching of two graphs of equal size by using the
eigendecompositions of the adjacency matrices. Kosinov
and Caelli[7] have used properties of the spectral decompo-
sition to represent graphs and Shokoufandeh et al[11] has
used eigenvalues of shock graphs to index shapes. Wilson
and Hancock have shown[13] how permutation invariant
polynomials can be used to derive features which describe
graphs and make full use of the available spectral informa-
tion. Ferrer et al[4] have used the spectral decomposition
to match graphs in a intermediate step to finding the graph
median.

The problem of representing a set of graphs via a repre-
sentative has been addressed by Jiang et al[6, 5], who define
the median of a set of graphs to be the graph which has the
minimum sum-of-distances to all the graphs in the set. This
definition is equivalent in a sense to the mean of a set of



points. The computation of such median graphs is compu-
tationally expensive and Jiang et al employ a genetic algo-
rithm to locate median graphs. Ferrer et al[4] use a spectral
method to compute correspondences between the eigende-
compositions of graphs, and then update the median graph
using these correspondences. The updates are performed
sequentially.

The spectral decomposition itself provides a partial or-
dering of the graph representation through the order of
eigenvalues. By completing the ordering process, we can
identify which parts of the graph correspond to each other
and so define the statistical quantities such as mean and vari-
ance which are required for a generative model. The other
key issue in a generative model, the ability to reconstruct
patterns from points in sample space, is also addressed par-
tially by using the spectral representation, since it is possi-
ble to generate candidate graphs from their spectral repre-
sentations. The spectral decomposition also represents prin-
ciple parts of the graphs, so we can use the representation
in order to mix different parts of graphs.

The outline of the paper is as follows; In section 2 we de-
scribe various matrix representations of graphs, which are
key to the reconstruction process. In section 3, we describe
how we order the spectral representations and mix them to-
gether. In section 4, the reconstruction process is detailed.
Finally, we provide some experimental analysis.

2 Spectral representations

The graphs under consideration here are undirected
graphs. The methods employed here also apply to weighted
graphs, but the case of a weighted graph we need not ul-
timately concern ourselves with recovering discrete edges.
We denote a graph byG = (V,E) whereV is the set of
nodes andE ⊆ V × V is the set of edges. The degree of
a vertexu is the number of edges incident on the vertexu
and is denoteddu. A matrix representationof the graph is a
|V | by |V | matrix X, such that an elementXij of this ma-
trix represents some property of the pair of verticesi andj.
Diagonal elementsXii encode information about the ver-
tex i only. A simple example is the adjacency matrixA,
whereAij is 1 when there is an edge betweeni andj, and
zero otherwise. There are a number of alternative represen-
tations which we discuss below.

The spectral representationof the graph is obtained
from the matrix representation using the eigendecompo-
sition. Let X be the matrix representation in question.
Then the eigendecomposition isX = ΦΛΦT whereΛ =
diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the or-
dered eigenvalues as elements andΦ = (φ1|φ2|....|φ|V |)
is the matrix with the ordered eigenvectors as columns. The
spectrum is the set of eigenvalues

s = {λ1, λ2, ..., λ|V |}

The spectral representation is the pair{Φ,Λ} which com-
pletely describe the graph, since the original adjacency ma-
trix can be constructed from the spectral representation. If
X is positive semi-definite, then we can combine these ma-
trices to define the spectral representation by a single matrix
ΦΛ

1
2 .

The spectral representation is not however a unique de-
scription of the graph. If we reorder the vertices ofG, then
although the graph is unchanged, we obtain a different ma-
trix and therefore a different spectral representation. IfP is
the permutation matrix which re-orders the vertices, then

X′ = PXPT

represents the same graph asX. The spectral representation
{PΦ,Λ} therefore represents the same graph for any per-
mutation matrixP. In addition if there are repeated eigen-
values in the spectrum, then the eigendecomposition is not
uniquely defined.

2.1 Standard Graph Representations

The most basic matrix representation of a graph is using
theadjacency matrixA for the graph. This matrix is given
by

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise

(1)

Clearly if the graph is undirected, the matrixA is symmet-
ric. As a consequence, the eigenvalues ofA are real. These
eigenvalues may be positive, negative or zero and the sum of
the eigenvalues is zero. The eigenvalues may be ordered by
their magnitude and collected into a vector which describes
the graph spectrum.

In some applications, it is useful to have a positive
semidefinite matrix representation of the graph. This may
be achieved by using theLaplacian. We first construct the
diagonal degree matrixD, whose diagonal elements are
given by the node degreesD(u, u) = du. From the de-
gree matrix and the adjacency matrix we then can construct
the standard combinatorial Laplacian matrix

L = D−A (2)

i.e. the degree matrix minus the adjacency matrix. The
Laplacian has at least one zero eigenvalue, and the num-
ber of such eigenvalues is equal to the number of disjoint
parts in the graph.

The signless Laplacianhas all entries greater than zero
and is defined to be

|L| = D + A (3)



3 Mixing spectral representations

Because graphs are not vectorial quantities, many oper-
ations which are straightforward with vectors are difficult
to do with graphs. For example, finding the mean of a set
of graphs is non-trivial task. An number of authors have
looked at the problem of averaging graphs. Jiang et al[6]
defined the median graph and proposed a genetic algorithm
to find the median. Ferrer et al[4] suggested using spectral
alignment of the graphs to speed up the process of finding
median graphs. In contrast to these approaches which look
for median adjacency matrices, we propose the direct mix-
ing or averaging of spectral modes.

The spectral representation is an interesting one in terms
of mixing graphs for a number of reasons. Firstly, part of
the correspondence problem is solved in the spectral rep-
resentation; the columns ofΦ are ordered by the eigenvec-
tor magnitude which is not affected by the vertex labelling.
However, the rows are still permuted when we change the
graph indexing. Secondly, in the Laplacian and related ma-
trices, structures of different scales in the graph are as-
sociated with eigenvalues of different magnitudes. It is
well known that the Fiedler vector of the normalised Lapla-
cian can be used to partition the graph into parts, whereas
the principle eigenvector represents global structure in the
graph. As a result, it is possible to mix different scales sep-
arately using the spectral representation.

3.1 Spectral alignment and mixing

Before mixing the spectral representations of two graphs,
we must first align the rows ofΦ so that they are in the same
order. This may be done using a spectral graph matching
method such as Umeyama’s method[12] or a variant such
as that of Ferrer et al[4]. In order for the process of mix-
ing spectral modes to be effective, the eigensystems of the
graphs must be relatively similar. These spectral methods
of alignment should be effective on such graphs. In the ex-
periments detailed below, the graphs are already correctly
aligned.

It is well known that the eigenvectors of the decompo-
sition of a matrix are sign-ambiguous. In other words, the
eigenvectors are recovered up to a sign factor of±1. It is
necessary to determine these factors if we are to correctly
mix the corresponding eigenmodes. Our method is based
on identifying the largest component of an eigenvector and
correcting the sign based on that coordinate. Given a set of
spectral matrices{Φ1,Φ2, ...,Φm}, letφij be thejth eigen-
vector (mode) fromΦi. Thekth component of this eigen-
vector can then be denotedφijk. We find the largest magni-
tude component for modej from

lj = arg max
k

∑
i

|φijk|

Figure 1. Example graphs and the spectral
average graph. Dotted edges have weights
of close to 1/2.

We then correct the sign of the eigenvectors by ensuring
that componentlj is positive for modej in all the spectral
matrices.

Once aligned, the spectral matrices may be merged by
simply taking the average of the matrices, i.e.

Φm =
1
2
(Φ̂1 + Φ̂2)

Λm =
1
2
(Λ̂1 + Λ̂2)

which will give a combination of two graphs. Figure 1
demonstrates an example of this mixing process. Figure
1 shows the original graphs and the result of reconstruction
from the mixed spectral representation using the method de-
tailed in the next section.

The spectral representation is a particularly flexible one
for mixing graphs since there is a separation of different
scales of the graph in the ordering of the eigenvalues. It is
therefore possible to mix graphs by selecting different parts
of the spectrum from each of the graphs being mixed. This
enables the selection of different parts of the structure from
the different graphs. In order to achieve this, we define a
mixing matrix thus:

Mi =


fi,1 0 ... 0
0 fi,2 ... 0
...

...
...

0 0 ... fi,n

 ,
∑

i

Mi = I

The diagonal elementsfij define the fraction of modej
which is selected from the spectrum of graphi. The mixed
spectral matrices are then defined as

Φm =
∑

i

ΦiMi (4)

Λm =
∑

i

ΛiMi (5)

Figure 2 shows the results of mixing the two exam-
ple graphs from Figure 1 in different proportions. On the
left, the modal proportions are[1, 0.5, 0, 0, 0, 0, 0, 0] and



Figure 2. Mixing spectral modes in different
proportions from two graphs

[0, 0.5, 1, 1, 1, 1, 1, 1] from the first and second graphs re-
spectively. On the right, the proportions are reversed, i.e.
[0, 0.5, 1, 1, 1, 1, 1, 1] and[1, 0.5, 0, 0, 0, 0, 0, 0]. By select-
ing the proportions we are able to mix key structures from
each of the two graphs.

4 Reconstruction

With the merged spectral representations to hand, we can
reconstruct a graph using the reverse of the eigendecompo-
sition:

Xm = ΦmΛmΦT
m

In general, the averaging process will lead to a matrixX
which does not have the required properties. Firstly, the av-
eraged spectral matrixΦm will not be orthonormal. In or-
der to correct this we apply the Gram-Schmidt orthogonal-
isation procedure toΦm to obtain an orthonormal spectral
matrix.

Secondly, the reconstructed matrix representation may
not be consistent with the chosen representation. For exam-
ple, if we are operating with Laplacians, the diagonal ele-
ments will not be the vertex degrees. In addition, the edges
will be weighted. There is therefore a need to projectXm

onto the nearest graph.
It is tempting to interpret the weights as edge probabil-

ities. In fact we could select edges in the final conditioned
Laplacian with a probability equal to their weights inXm.
This approach would generate sets of random graphs which
are close to the original graph. On the other hand, this ig-
nores the co-occurence of edges in the original graphs. A
simple and satisfactory solution is to use a threshold for
edges and non-edges. An element ofXm is considered an
edge if it is greater thanθ, an adjustable threshold.

5 Experimental results

In the first set of experiments, we take a graph set and de-
termine the spectral average graph by the method described
above. The graphs have eight vertices with a common core
graph consisting of four vertices. This is linked to another
graph of four vertices which contains random edges for each

of the graphs in the set. The goal is to find a graph which is
similar to all graphs of the set. In order to visualise the re-
sults, we have produced an MDS plot based on the edit dis-
tances between the graphs. For comparison, we have found
the median graph as defined by Jiang et al[5], which is de-
fined by

Gm = arg min
G

∑
d(Gi, G)

where d(.) is the edit distance. We can alsoe =∑
d(Gi, G) as a measure of the quality of the average

graph.

Graph set

Spectral average

Median graph

Graph set

Spectral average

Median graph

Figure 3. MDS projection of graph sets with
spectral average and median graphs: Top - a
5 graph set, bottom - a 10 graph set

Figure 3 shows the results for two graph sets. The set on
the left has five graphs. The spectral average graph has a
total distance ofe = 10 and differs by one edge from the
median graph which hase = 9. On the right, ten graphs
are used in the set. Here the median and spectral average
graphs are identical and havee = 22, less than any graphs
from the original set.

One of the key benefits of mixing graphs in spectral rep-
resentations is the ability of the ability of the representation
to separate different structural parts of the graph. In order
to examine the effectiveness of this approach, we have con-
structed a second experiment. In this experiment we gener-
ate two graph classes. Both classes are generated by joining
two core structures at a common vertex. Let the core graphs



 

 

Graph Set 1
Graph Set 2
Mixed Graphs
Spectral Average of Set 1 and 2
Spectral Average of Set 1
Spectral Average of Set 2

Figure 4. Mixing the spectral modes of differ-
ent graph sets. The circled points consist of
examples from set 1, set 2 and a mixed graph.

Figure 5. The mixed graphs circled in Figure
4.

be C1, C2, C3. Then set one is constructed by joiningC1

andC2, and set two by joiningC1 andC3. In the results
below, the core graphs are 5 vertices. Before constructing
each example, the core graph is perturbed by a random edge
edit operation. As a result we obtain two sets which are in-
ternally very similar and between sets slightly less than half
the graph is similar. By spectrally mixing a pair from each
set, we hope to obtain graphs which have parts from both
sets and so lies between them. The results are shown in
Figure 4. Figure 5 shows the example graphs circled in Fig-
ure 4. The two graph sets form their own individual groups,
and we have successfully generated example which lie over
the whole space spanned by the two sets and in between.
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