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Abstract

Generative models are well known in the domain of sta-
tistical pattern recognition. Typically, they describe the
probability distribution of patterns in a vector space. The
individual patterns are defined by vectors and so the indi-
vidual features of the pattern are well defined. In contrast,
very little work has been done with generative models of
graphs because graphs do not have a straightforward vecto-
rial representation. Because of this, simple statistical quan-
tities such as mean and variance are difficult to define for
a group of graphs. While we can define statistical quanti-
ties of individual edges, it is not so straightforward to define
how sets of edges in graphs are related.

In this paper we examine the problem of creating gen-
erative distributions over sets of graphs. We use the spec-
tral representation of the graphs to construct a dual vector
space for the graphs. The spectral decomposition of a graph
can be used to extract information about the relationship of
edges and parts in a graph. Distributions are then defined
on the vector spaces and used to generate new samples. Fi-
nally, these points must be used to reconstruct the sampled
graph.

1 Introduction

Generative models are well known in the domain of sta-
tistical pattern recognition. Typically, they describe the
probability distribution of patterns in a vector space. The
individual patterns are defined by vectors and so the indi-
vidual features of the pattern are well defined. Graphs are
not naturally represented in a vector space since there is no
natural labelling of the vertices of the graphs - different la-
bellings lead to different representations of the graph struc-
ture.

The key problem in utilising graph representations lies
in measuring their structural similarity. This is a difficult
problem because there is no explicit labelling of the parts,

and typically correspondences must be established before
similarity can be assessed. As an example, Sanfeliu and
Fu[10] employed the concept of graph edit distance, giv-
ing separate edit costs for relabeling, insertion and deletion
on both nodes and edges. A search is necessary to locate
the set of operations which have minimal cost. More re-
cently, Bunke[1, 2] has established a relationship between
the minimum graph edit distance and the size of the maxi-
mum common subgraph. The graph edit distance provides a
well defined way of measuring the similarity of two graphs.

Spectral graph theory provides another approach to the
problem of graph similarity[3]. Eigenvector methods have
been used for grouping via pairwise clustering. Exam-
ples include Shi and Malik’s [12] iterative normalised cut
method which uses the Fiedler (i.e. second) eigenvector for
image segmentation and Sarkar and Boyer’s use of the lead-
ing eigenvector of the weighted adjacency matrix [11]. The
spectrum therefore reveals information about the relation-
ships between parts of the graph. Graph spectral methods
have also been used for correspondence analysis. For ex-
ample, Umeyamas method[14] allows the matching of two
graphs of equal size by using the eigendecompositions of
the adjacency matrices. Ferrer et al[4] have used the spec-
tral decomposition to match graphs in a intermediate step to
finding the graph median.

The problem of representing a set of graphs via a repre-
sentative has been addressed by Jiang et al[5, 6], who define
the median of a set of graphs to be the graph which has the
minimum sum-of-distances to all the graphs in the set. This
definition is equivalent in a sense to the mean of a set of
points. The computation of such median graphs is compu-
tationally expensive and Jiang et al employ a genetic algo-
rithm to locate median graphs. Ferrer et al[4] use a spectral
method to compute correspondences between the eigende-
compositions of graphs, and then update the median graph
using these correspondences. The updates are performed
sequentially.

While the construction of generative probabilistic mod-
els for vectorial data is well know, the problem of defining



distributions of graphs and generating new examples has
recieved little attention. One approach to the problem is
to find a vectorial representation of the graph and then de-
fine a distribution on the new representation. Of course,
this also creates the additional problem of reconstructing a
new graph from the vector space. There are a number of
methods in the literature for representing graphs in a vector
space. Kosinov and Caelli[7] have used properties of the
spectral decomposition to represent graphs and Shokoufan-
deh et al[13] has used eigenvalues of shock graphs to index
shapes. Wilson and Hancock have shown[16] how permu-
tation invariant polynomials can be used to derive features
which describe graphs and make full use of the available
spectral information. However, it is difficult to reconstruct
graphs from these representations

Luo, Wilson and Hancock[9] directly exploit the adja-
cent matrix by converting it into a long-vector. An initial
correspondence step is used to align the adjacency matrix
and the long-vectors are analysed using the eigenmodes.
Xiao and Hancock[17] have used the eigenvalues and eigen-
vectors of the heat kernel to construct the requisite vec-
tors before constructing a Normal distribution in the vec-
tor space. While both of these methods construct genera-
tive models over the vector space, neither is able to produce
reconstructed graphs satisfactorily, for reasons which will
become apparent later in this paper.

The outline of the paper is as follows; In section 2 we
describe various matrix representations of graphs, which
are key to the reconstruction process and the derived spec-
tral representation. In section 3, we construct a generative
model. In section 4 we explain how the graphs are recon-
structed. Finally, we provide some experimental analysis.

2 Matrix representations of graphs

The graphs under consideration here are undirected
graphs. The methods employed here also apply to weighted
graphs, but the case of a weighted graph we need not ul-
timately concern ourselves with recovering discrete edges.
We denote a graph by G = (V,E) where V is the set of
nodes and E ⊆ V × V is the set of edges. The degree of
a vertex u is the number of edges incident on the vertex u
and is denoted du. A matrix representation of the graph is a
|V | by |V | matrix X, such that an element Xij of this ma-
trix represents some property of the pair of vertices i and j.
Diagonal elements Xii encode information about the ver-
tex i only. A simple example is the adjacency matrix A,
where Aij is 1 when there is an edge between i and j, and
zero otherwise. There are a number of alternative represen-
tations which we discuss below. Since the order of vertices
in the graph does not matter, if we permute the indices i as-
sociated with the graph vertices then the graph remains the
same. If P is the permutation matrix which re-orders the

vertices, then
X′ = PXPT

represents the same graph as X.

2.1 Standard Graph Representations

The most basic matrix representation of a graph is using
the adjacency matrix A for the graph. This matrix is given
by

A(u, v) =
{

1 if (u, v) ∈ E
0 otherwise

(1)

Clearly if the graph is undirected, the matrix A is symmet-
ric. As a consequence, the eigenvalues of A are real. These
eigenvalues may be positive, negative or zero and the sum of
the eigenvalues is zero. The eigenvalues may be ordered by
their magnitude and collected into a vector which describes
the graph spectrum.

In some applications, it is useful to have a positive
semidefinite matrix representation of the graph. This may
be achieved by using the Laplacian. We first construct the
diagonal degree matrix D, whose diagonal elements are
given by the node degrees D(u, u) = du. From the de-
gree matrix and the adjacency matrix we then can construct
the standard combinatorial Laplacian matrix

L = D−A (2)

i.e. the degree matrix minus the adjacency matrix. The
Laplacian has at least one zero eigenvalue, and the num-
ber of such eigenvalues is equal to the number of disjoint
parts in the graph. The signless Laplacian is a modification
of the Laplacian which contains only positive entries[15]:

|L| = D + A (3)

The normalised Laplacian is a scaled version of the Lapla-
cian

L = I−D− 1
2 AD− 1

2 (4)

which has eigenvalues 0 ≤ λ ≤ 2. Finally, the commute
time matrix C has also been used as a graph representation.
The commute time between two vertices u and v is the ex-
pected time for a random walk on the graph to travel from u
to v and back, which we denote by Cuv . The commute time
is related to the spectral decomposition of the normalised
Laplacian [8].

2.2 Spectral Representations

The spectral representation of the graph is obtained
from the matrix representation using the eigendecompo-
sition. Let X be the matrix representation in question.
Then the eigendecomposition is X = ΦΛΦT where Λ =



diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the or-
dered eigenvalues as elements and Φ = (φ1|φ2|....|φ|V |)
is the matrix with the ordered eigenvectors as columns. The
spectrum is the set of eigenvalues

s = {λ1, λ2, ..., λ|V |}

The spectral representation is the pair {Φ,Λ} which com-
pletely describe the graph, since the original adjacency ma-
trix can be constructed from the spectral representation.
If X is positive semi-definite (and so has positive or zero
eigenvalues), then we can combine these matrices to define
the spectral representation by a single matrix ΦΛ

1
2 .

The spectral representation is not however a unique de-
scription of the graph. If we reorder the vertices of G,
then although the graph is unchanged, we obtain a differ-
ent matrix and therefore a different spectral representation.
The spectral representation {PΦ,Λ} therefore represents
the same graph for any permutation matrix P. In addition
if there are repeated eigenvalues in the spectrum, then the
eigendecomposition is not uniquely defined.

Given that there are many matrix representations of a
graph, the question remains which we should use. There
seems no apriori reason why one particular representation
should be favourable, but in order to statistically model
graphs we would like similar graphs to have similar spectral
representations. Therefore, in order to answer the question
of which representation to use, we have compared the simi-
larity of the spectral representations of related and unrelated
graphs. The unrelated graphs have 20 vertices and are cre-
ated by randomly selecting edges with probability 1/2. The
related graphs are generated from a random seed graph by
corrupting edges with probability 0.015, leading to an av-
erage dissimilarity of 2.85 edges. Figure 1a measures the
similarity of the eigenvectors of related graphs by the aver-
age scalar product between the eigenvectors. The eigenval-
ues of the random and related graphs have the same mean,
so we measure the similarity by the ratio of standard devi-
ation for the related and unrelated classes of graph (Figure
1b). The results show that the representation makes no dif-
ference to the eigenvectors, but the eigenvalues are clearly
more consistent for the Laplacian, commute time and the
signless Laplacian. Therefore we choose to use the Lapla-
cian representation.

3 A Generative Model

The spectral representation is an interesting one in terms
of mixing graphs for a number of reasons. Firstly, part of
the correspondence problem is solved in the spectral rep-
resentation; the columns of Φ are ordered by the eigenvec-
tor magnitude which is not affected by the vertex labelling.
However, the rows are still permuted when we change the

a) Similarity of Eigenvectors

b) Similarity of Eigenvalues

Figure 1. The similarity of spectral decompo-
sitions of various matrix representations

graph indexing. Secondly, in the Laplacian and related ma-
trices, structures of different scales in the graph are as-
sociated with eigenvalues of different magnitudes. It is
well known that the Fiedler vector of the normalised Lapla-
cian can be used to partition the graph into parts, whereas
the principle eigenvector represents global structure in the
graph. As a result, it is possible to mix different scales sep-
arately using the spectral representation.

Before proceeding, we must first align the rows of Φ so
that they are in the same order. This is necessary so that the
corresponding elements of our vector space are the same
over all graphs in the sample set. This alignment step is
not the focus of this paper, so we assume that our graph
set has been pre-aligned using one of the many alignment
methods in the literature. In particular we propose the use
of a spectral graph matching method such as Umeyama’s
method[14] or a variant such as that of Ferrer et al[4] since



we already have the spectral decomposition to hand.
It is well known that the eigenvectors of the decompo-

sition of a matrix are sign-ambiguous. In other words, the
eigenvectors are recovered up to a sign factor of ±1. It is
necessary to determine these factors if we are to correctly
mix the corresponding eigenmodes. Our method is based
on identifying the largest component of an eigenvector and
correcting the sign based on that coordinate. Given a set of
spectral matrices {Φ1,Φ2, ...,Φm}, let φij be the jth eigen-
vector (mode) from Φi. The kth component of this eigen-
vector can then be denoted φijk. We find the largest magni-
tude component for mode j from

lj = arg max
k

∑
i

|φijk|

We then correct the sign of the eigenvectors by ensuring
that component lj is positive for mode j in all the spectral
matrices.

Once aligned, we construct two vectors from the spec-
tral decomposition. The first vector is simply the vector of
(ordered) eigenvalues:

e(G) =


λ1

λ2

. . .
λn

 (5)

The second vector is the long-vector of the eigenvector ma-
trix:

z(G) =


φ1,1

φ2,1

. . .
φnn

 (6)

In Xiao and Hancock[17] these components were combined
by considering the long-vector of ΦΛ

1
2 derived from the

heat kernel. This long-vector contains all the information
to reconstruct the graph in a single vector; the eigenvalues
are encoded in the lengths of the vectors. This will not lead
to a satisfactory vector space, which we can see by consid-
ering the mixing of two vectors from two slightly different
graphs. If we average these vectors and they are not point-
ing in the same direction, the resultant length will be shorter
than the lengths of the originals. Since the eigenvalue is en-
coded in the length, this results in smaller eigenvalues and
unsatisfactory reconstructions. By employing two separate
models we can correct the length of the eigenvectors.

Given the dual vector space representation of the graphs,
we construct a distribution over the sample set of graphs.
To do this we compute the PCA decomposition for both
the eigenvalues and eigenvectors of the sample graphs. We
commence by computing the mean and covariance for each:

e =
1
k

k∑
i=1

e(Gi) (7)

Figure 2. The kernel density estimations for
the eigenvectors of the sample graphs. The
graphs have (top left) 10 nodes, (top right)
20 nodes, (bottom left) 30 nodes and (bottom
right) 40 nodes.

z =
1
k

k∑
i=1

z(Gi) (8)

We then construct separate covariance matrices for the
two sets Ce and Cz

With the covariance matrices to hand, we perform the
eigendecomposition on both Ce and Cz . This results in
four matrices Λe and Φe (representing the eigenvalues and
eigenvectors of Ce) and Λz and Φz (representing the eigen-
values and eigenvectors of Cz).

We now have the information needed about the distri-
bution of the eigenvalues and eigenvectors of the graphs in
the sample set. For example, the matrix Λz describes the
variance of each component in Φz and the magnitude of the
values in Λz shows the relative importance of the associated
component.

For the generative step of our method to work it is nec-
essary to show that the distribution is normal, clearly the
eigenvalues are normally distributed but this is not as clear
for the eigenvectors. To show that the eigenvectors are also
normally distributed we take the zero-mean long eigenvec-
tor vector z′ for each graph and multiply it with the with the
two principle components in Φz resulting in a point in 2d
space. We can visualize this set of points using kernel den-
sity estimation and see if the surface formed is close to the
normal distribution. For graphs below 10 nodes the surface
is far from normal, however as the number of nodes in the
sample graphs increases the surface becomes closer to the
normal distribution (see Figure 2).



4 Generation and Reconstruction

With the distribution of the sample graphs defined, we
can sample from it to generate new graphs. A vector for the
eigenvalues and eigenvectors of the new graph is generated
by sampling from the normal distributions defined on the
original graph sets. Parameter vectors be and bz are gener-
ated (for the eigenvalues and eigenvectors respectively).

ê = e + Φebe (9)

ẑ = z + Φzbz (10)

Each element of the parameter vector is computed by
sampling from the normal distribution with zero mean and
variance determined by the diagonal values in Λe for the
eigenvalues and Λz for the eigenvectors. If we define a
random number generator for the normal distribution as
N (Mean, V ariance), then the parameter vectors are com-
puted as such:

be(i) = N (0,Λe(i, i)) (11)

bz(i) = N (0,Λz(i, i)) (12)

The new vectors must be converted back into matrix
form:

Λ̂ = diag(ê1, ê2, · · · , ên) (13)

Φ̂ =

 ẑ1 ẑn+1 · · · ẑn2−n+1

...
...

...
ẑn ẑ2n · · · ẑn2

 (14)

In general the new set of eigenvectors that have been gen-
erated will not be orthogonal and therefore do not represent
an eigendecomposition. We correct them by projecting back
onto an orthogonal matrix:

Φ̂O = (Φ̂Φ̂T )−
1
2 Φ̂ (15)

The eigenvectors and eigenvalues are combined to pro-
duce the Laplacian matrix for the new graph:

L̂ = Φ̂OΛ̂Φ̂T
O (16)

The generated matrix will be close to a “correct”
Laplacian matrix of a graph due to the separate eigen-
value/eigenvector distributions and the othogonization of
the generated eigenvectors. However, it will not be an exact
Laplacian due to the continuous nature of the normal distri-
bution in contrast to the discrete graph representation. We
must therefore perform a final recovery step to obtain an ac-
curate matrix representation of the new graph. We choose
to do this through thresholding. An exact value cannot be
set for all cases since it depends on the average connectiv-
ity of the sample graphs. However, this is quite simple to

compute by observing the average value of the off-diagonal
elements in the normalized Laplacian matrices of the sam-
ple graphs. The values in the off-diagonal of the Laplacian
are negative and hence the elements in L̂ are only recorded
as an edge if they are lower than the threshold θ. We recover
the Laplacian back to an adjacency matrix Â:

Â(u, v) =

{ 0 if u = v
1 if L̂(u, v) < θ
0 otherwise

(17)

5 Experimental results

In this section we detail the results of testing our method
on synthetic data. We commence by generating a random
reference graph. We then perturb this graph by perform-
ing a random number of edit operations on the edges (either
inserting a new edge or deleting an edge present in the ref-
erence graph). This is repeated to produce the sample set
of graphs. Each potential edge in the graph is inserted or
deleted with a probability of 0.05%.

With the sample set to hand we create the generative
model. Newly generated adjacency matrices are checked to
see if they appear in the set of sample graphs, that is to see
if we are generating new graphs or just reproducing graphs
in the sample set. If we generate 100 new graphs from a
sample set of 1000 graphs of 10 nodes each then about 95%
of the new graphs do not appear in the sample set.

To confirm that our generated graphs fall correctly within
the distribution we perform PCA on the generated graphs
and those in the sample set. The results of this are in fig-
ure 3, which shows the generated graphs conforming to the
distribution of the sample graphs.

Figure 4 shows the generated adjacency matrices in
graphical form. Each 1 in the adjacency matrix is depicted
as a filled box and each 0 as a white box. The reference
graph is shown at the top and the generated graphs are
shown below. The generated graphs in this figure are only
ones that do not appear in the sample set. They are ordered
from left to right by the number of edit operations they dif-
fer from the reference graph (the top left graph has the least
edit operations, the bottom right graph the most edit opera-
tions).

6 Conclusions

In this paper we have shown how to construct a proba-
bilistic model of the distribution of a set of graphs which
can be used to generate new examples from the set. This is
achieved by constructing two vector spaces to represent the
graph. This separation of eigenvalue and eigenvector model
is vital because of the vastly different properties of these
elements. Vectors generated from the distribution can then



Figure 3. The PCA 2D plot showing the dis-
tribution of the sample graphs (marked with
crosses) and the generated graphs (marked
with circles).

be reconstructed into graphs after appropriate conditioning.
We show that the generated graphs do in fact form part of
the original distribution, and lie within the original cluster
or graphs. Furthermore the generated graphs are novel and
nearly always different from graphs in the sample set, but
are still close in terms of edit distance.
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