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Abstract

A current limitation in embedded controller design and programming is the lack of
database support in development tools such as Esterel Studio. This article proposes
a way of integrating databases and Esterel by providing two Application Programming
Interfaces (APIs) which enable the use of relational databases inside Esterel programs.
As databases and Esterel programs are often executed on different machines, result sets
returned as responses to database queries may be processed either locally and according
to Esterel’s synchrony hypothesis, or remotely along several of Esterel’s execution cycles.
These different scenarios are reflected in the design and usage rules of the two APIs
presented in this article, which rely on Esterel’s facilities for extending the language by
external data types, external functions and procedures, as well as tasks.

The APIs’ utility is demonstrated by means of a case study modelling an automated
warehouse storage system, which is constructed using Lego Mindstorms robotics kits.
The robot’s controller is programmed in Esterel in a way that takes dynamic ordering
information and the warehouse’s floor layout into account, both of which are stored in a
MySQL database.

Keywords: Embedded systems programming, synchronous languages, Esterel, relational
databases, API, Lego Mindstorms.

1 Introduction

One of the current limitations in the programming of embedded controllers is the lack of
database support available within languages such as Esterel [3, 4] and Lustre [9], and their de-
velopment environments, Esterel Studio and SCADE [11], respectively. These environments
are used by large avionics manufacturers and vendors of digital signal processing solutions for
developing the software of complex, and often safety–critical, embedded systems. Both Es-
terel and Lustre are synchronous languages which aim at describing reactions in cycle–based
reactive systems, including embedded controllers. Such systems continuously interact with
their physical environment by (i) reading in signals representing sensor values, such as an
aircraft’s speed, altitude and attitude, (ii) computing a reaction based on these values, such
as a rudder angle, and (iii) emitting signals carrying the computed values to the environment,
e.g., to the hydraulic system moving the rudders. While Esterel is a textual, imperative lan-
guage that aims at modelling control flow and has semantical similarities to Statecharts [21],
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Lustre is best suited for modelling data flow and is a graphical language centred around block
diagrams, very much like Simulink [18].

The problem. What all development environments that are available for these languages
have in common is that they support the automatic generation of code, such as C, Ada or
VHDL code, from abstract program descriptions. In this way, they aim to make embedded
software design and programming more cost–effective when compared to traditional software
development processes. However, Esterel Studio and SCADE do not provide an easy way
of integrating databases within an application. Other reactive systems design tools are very
limited in this respect as well, including Simulink/Stateflow [6] and Statemate [13, 14]. As
is, a system designer needs to modify auto–generated code by hand in order to interface to
databases, which is both difficult and error–prone. This is a problem very much relevant in in-
dustry since some reactive systems programmed in synchronous languages would benefit from
an easy model of database interaction. For example, synchronous languages are often used to
build the flight software for aeroplanes. Adding database interaction would enable spacial and
mapping data to be retrieved and processed directly by the reactive kernel implementing an
auto pilot. Further examples are infotainment systems in the automotive sector, particularly
navigation systems, or process control systems in nuclear reactors where regulators require
that logs of data are recorded and kept.

Our contribution. This article addresses the aforementioned limitation by providing Ap-
plication Programming Interfaces (APIs) for using relational databases within the Esterel
programming language. We choose MySQL [19] as the database and, since reactive kernels
are produced as C programs by the Esterel compiler [2, 10, 22], the APIs are implemented
using the MySQL C interface [20] whose functionality we aim to mirror in our APIs for
Esterel. MySQL is selected here simply for its convenience and since it is widely used. How-
ever, our approach can as easily be applied to other relational databases. To the best of our
knowledge, no work on database integration within Esterel, or similar languages, has been
published in the literature before. This does not mean, however, that we are the first to
integrate an existing synchronous language with a database system. The problem is that
other works are commercial and not in the open domain. This includes National Instruments’
LabVIEW Database Connectivity Toolkit [15] which is a set of tools for connecting programs
designed in LabVIEW to popular databases, such as Microsoft Access, SQL Server and Or-
acle, and for implementing many common database operations without having to perform
SQL programming.

Because database transactions are relatively complex when compared to responses of
Esterel reactive kernels, databases and reactive programs must be considered as running
asynchronously to each other. This is true regardless of whether they reside on the same
machine or on different machines. In the former case, however, result sets to database queries
may reasonably be assumed to be processed within a single synchronous step of the reactive
kernel. In the latter case, result sets are necessarily read asynchronously to the reactive
kernel. For these reasons, one API for each situation is provided: a Local Result Set API
and a Remote Result Set API. The realisation of both APIs relies on Esterel’s support for
extending the language via external data types, external functions and procedures, and tasks.
For example, the Local Result Set API makes heavy use of external functions and procedures.
This is because these are considered to execute instantaneously, i.e., within a single reaction
cycle, and therefore do not interfere with the synchronous nature of Esterel programs. On
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the other hand, the Remote Result Set API is implemented using Esterel’s task mechanism
which allows external code to run asynchronously to an Esterel program, i.e., alongside several
program cycles, but still be controlled by it.

We demonstrate the utility of our APIs by means of a case study involving a warehouse
storage system. The idea behind this is that of a direct order company, i.e., orders must be
picked from items stored in a warehouse. Accordingly, a robot is built and programmed to pick
up and drop off items, therefore making it possible for a complete order to be collected and
stored. The orders and the information about the items are provided by a database. Part of
the information stored on an item is its position in the warehouse, thereby providing mapping
data for the robot. The case study is realised using Lego Mindstorms robotics kits [1, 17],
which provide a small programmable brick, called the RCX, that houses a microcomputer
capable of running an Esterel reactive kernel. Sensors and actuators connected to the RCX,
such as touch, light and rotation sensors and motors, respectively, permit interaction with the
RCX’s environment. The RCX also has a built–in infrared port, which we use to communicate
with the warehouse database on the server.

Organisation. The next section gives a brief introduction to the Esterel language. Sec. 3
describes both our APIs, emphasising the general model of interaction between Esterel reac-
tive kernels and databases. Some details regarding the APIs’ implementations can be found
in Sec. 4. Our case study involving the warehouse storage system is presented in Sec. 5, while
Sec. 6 contains our conclusions.

2 A brief overview of Esterel

The Esterel language for programming embedded controllers has been developed by Gérard
Berry in France since the early Eighties [5] and has been commercialised by Esterel Technolo-
gies in their Esterel Studio design suite [11].

Esterel is part of a family of languages — the so called synchronous languages — that are
reactive and synchronous. Reactive means that an Esterel program is constantly interacting
with its environment, while synchronous means that these interactions are periodic, with the
computation of each reaction being “instantaneous”, i.e., reactions are computed faster than
the environment is sampled for inputs. Esterel affects and samples its environment through
signals, which are its primary communication device. For example, a signal representing a
button press will either be present if the button is pressed or absent if not. Signals can also
carry data values, which is useful when working with sensor readings and actuator parameters.

Moreover, Esterel is an imperative programming language. It is particularly suited for
control–dominated applications as it allows for the expression of parallelism and preemption.
Its core language elements include the following statements [3]:

• emit S emits signal S in the current instant, i.e., the current reaction cycle;

• present S then stmt1 else stmt2 end checks whether signal S can be determined as
either present or absent in the current instant; if it is present, then stmt1 is executed,
and if it is absent, then control passes to stmt2 ;

• pause stops execution in the current instant, and resumes execution in the next instant;
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• loop stmts end executes stmts repeatedly; the loop body stmts must include at least
one pause statement;

• stmt1 || stmt2 runs stmt1 and stmt2 concurrently.

We illustrate Esterel’s syntax and semantics by means of a small example; note that this
example is not intended to have any particular meaning.

output X : integer;

input A1, A2;

input B : boolean;

module test_program:

emit X(10);

loop

await A1 || await A2;

await immediate B;

pause;

if ?B then

present A1 then

emit X(100);

end

end

end

end module

Our example program has one output signal X carrying an integer value, two input signals
A1 and A2 carrying no values, and one input signal B carrying a Boolean value. As can
be seen, Esterel programs are split into modules, so as to support the concepts of program
decomposition and software reuse.

In the first instant, i.e., reaction cycle, of our example program, value 10 is emitted on
output signal X, and the loop body is entered. This is followed by the await A1 || await A2

statement which tells the program to concurrently wait for input signals A1 and A2, and
ends the first instant. The program now continues waiting for A1 and A2 forever, so let us
assume that these signals are received from the environment sometime before the second
instant. Therefore, in the second instant, statement await A1 || await A2 completes and
await immediate B is executed. The use of the immediate keyword means that the input
signal can arrive in the instant that executed the await immediate statement, i.e., it does
not force the next instant to take place like statement await. Instead, a pause statement
can be used in oder to force the next instant to occur. The present statement shows how
to access values carried via signals, namely through the use of the ? operator. Hence, if the
value of signal B read in the previous instant is true and if input signal A1 is present, then
the integer 100 is output via signal X, before the loop executes again.

The semantics of Esterel is well defined and has been extensively investigated in the
literature [4]. In addition to the synchrony hypothesis which underlies th concept of cycle–
based reaction, the semantics is based on the principles of consistency, causality, reactivity

4



and determinism. Consistency means that a signal cannot be both present and absent within
the same instant. Every presence and absence of a signal must further be causally justified,
by ultimately referring to the presence and absence of the input signals. Moreover, a program
must permit a reaction, no matter what the statuses and values of the input signals are, i.e.,
it must be reactive. It must also compute a unique reaction in each instant, for each possible
input, whence it is deterministic.

It has been mathematically verified that Esterel’s semantics possesses many desirable
properties. In particular, the set of all valid Esterel programs corresponds one–to–one to the
set of those asynchronous digital circuits with feedback that stabilise independently of any
gate or wire delays [23]. This close relationship between programs and circuits is utilised
by the code generators available in Esterel Studio. While creating VHDL or Verilog from a
valid Esterel program involves synthesising the circuit corresponding to the program, Esterel
Studio’s C code generator essentially simulates this synthesised circuit.

Last, but not least, it must be pointed out that Esterel is an extensible language, which
allows users to define external data types, external functions and procedures, as well as tasks.
Given that the processing of reactions must be quicker than the system’s environment, it
seems reasonable to disallow any operations to take place during the kernel processing that
might cause delay to a subsequent instant. It is for this reason that external functions and
procedures in Esterel must be instantaneous [3]. If asynchronous execution of external code
is desired, then tasks ought to be used. We have made extensive use of Esterel’s extensibility
features during the development of our database APIs.

3 Database APIs for Esterel

In this section we devise two different APIs for enabling relational database access within
Esterel, depending on whether result sets to queries are stored locally or remotely to the
Esterel reactive kernel. Both allow multiple, simultaneous connections to databases and are
intended for use in different application scenarios.

We start off by providing the rationale for developing two APIs, for which we review the
possible computing architectures running an Esterel reactive kernel and a database. Both our
APIs consider databases as part of the system environment and as running asynchronously
to the reactive kernel. This is because database transactions are typically more complex to
process than ordinary reactions. A typical database interaction consists of several stages.
First, the database is queried and a result set is generated according to that query. Such a
result set is simply a set of rows, possibly ordered, that contains the data specified in the
query. From this point on, most database management systems allow for two different routes
to access the result set. One method is to transfer the whole result set to the client that
issued the query, and let the client use the information as necessary. The alternative method
is for use in situations where it is infeasible to transfer the whole result set, due to memory
or bandwidth constraints. Instead, the client machine may access the result set stored on
the database server in a row–by–row manner, minimising the speed at which data needs to
be transferred to the client machine. This dual–retrieval method offered for the result set is
what facilitates our decision to develop two APIs instead of a single one:
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The Local Result Set API views the result set as being local to the reactive kernel. In
this case, operations on the result set can conceptually be considered to be instantaneous,
thus satisfying the synchrony hypothesis [12]. This API will therefore make heavy use of
user–defined external functions and procedures, which require synchrony. In practise, the
Local Result Set API is for use when there is either a high–speed link between the database
server and the reactive client, or when both reside on the same physical machine.

The Remote Result Set API considers the result set to be stored remotely to the reactive
client, i.e., the result set — in addition to the database — is viewed as part of the reactive
system’s environment. This allows for the result set to be transferred row–by–row to the client,
as is standard practice when accessing relational databases and closely fits with the provisions
of MySQL. This is for use when, e.g., the link between the database result set and the client
is much slower than the duration of a reactive cycle. As a consequence, transfers are not
instantaneous, and the Remote Result Set API cannot employ Esterel’s elegant mechanism
of external functions and procedures, but must rely on signals and tasks instead. Indeed, a
task concept has been incorporated into Esterel exactly for the purpose of handling external,
asynchronous computations.

In the following we discuss the design and usage of both APIs, first the Local Result
Set API and then the Remote Result Set API. Some of the implementation details of the
APIs will be presented later in Sec. 4; in particular, users will be able to customise the APIs
according to their wishes, e.g., in terms of the number of database connections required and
the frequency with which they are accessed.

3.1 Local Result Set API

The easiest way to view the interaction between a reactive kernel programmed in Esterel and a
database is to regard the database simply as an extension of the reactive kernel’s environment.
For this reason all interactions with the database from within Esterel are modelled using input
and output signals, as these are Esterel’s facilities for communicating with the environment.
Therefore, to perform an operation on the database, a dedicated output signal is emitted,
parameterised in a string that formulates a query in SQL syntax. The database’s response
is awaited via a dedicated input signal whose parameter carries an identifier that points to
the result set. During the time between the emitted query and the results returning, the
database is queried and the whole result set is transferred back to the site that also runs
the reactive kernel. Note that multiple databases can simply be supported by declaring a
dedicated output and input signal for each database.

Once a database has been queried and a result set returned, data can be extracted from
the result set via dedicated operations, for which we employ Esterel’s external function and
external procedure facilities. This is possible since both the result set and the reactive kernel
reside in the same memory, which implies that accesses of the result set by the kernel may be
considered as instantaneous. If the query’s SQL command is one that does not return results,
such as the command for the deletion of data items, then the only operation provided is one to
check the number of affected rows. If the SQL command did return a result set, however, the
set may be accessed by successively reading it row–by–row, extracting the specific data items
from each row and coercing them into native Esterel data types. Once all rows have been
processed, an operation shall be called to free the memory occupied by the result set. Note
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Table 1: Services offered by the Local Result Set API

type MYSQL_RES_ptr;

type MYSQL_ROW;

procedure appstr() (string, string);

procedure appint() (string, integer);

procedure appbol() (string, boolean);

procedure appflt() (string, float);

procedure appdou() (string, double);

output <Signal name for emitting query> : string;

input <Signal name for returning results> : MYSQL_RES_ptr;

function check_result(MYSQL_RES_ptr) : boolean;

function get_next_row(MYSQL_RES_ptr) : MYSQL_ROW;

function num_rows(MYSQL_RES_ptr) : integer;

function getstr(MYSQL_ROW, integer) : string;

function getint(MYSQL_ROW, integer) : integer;

function getbol(MYSQL_ROW, integer) : boolean;

function getflt(MYSQL_ROW, integer) : float;

function getdou(MYSQL_ROW, integer) : double;

function num_affected_rows(MYSQL_RES_ptr) : integer;

procedure clear_results() (MYSQL_RES_ptr);

that the three main operations (querying, retrieving results and clearing results) must always
be conducted in this order; for example, emitting a second query, before having received
and cleared the results for the first one, results in undefined behaviour. This is also true
analogously for the Remote Result Set API. Esterel’s interaction with a remote database and
its local processing of result sets thus leads to the API displayed in Table 1. In the remainder
of this section we explain and illustrate the API’s services in more detail.

We begin with the formation of a query string containing SQL commands. Since Esterel
does not provide any facilities for building strings, the string must be generated using a series
of append operations. The API offers an append operation for each of Esterel’s native data
types and implements these operations in Esterel using external procedures. As an example,
the following Esterel program fragment generates a query related to our warehouse case study,
which uses an integer variable order_id:

var query_str : string in

query_str := "select * from orders where order_id = ";

call appint() (query_str, order_id);

end var

As mentioned before, one interacts with the database via an output query signal and an
input result signal. For each database used, these signals should be declared as such:
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output item_db_query : string;

input item_db_results : MYSQL_RES_ptr;

Each pair of signal names can be selected by the user. The mapping between these signal
names and the actual databases is defined elsewhere and will be explained in Sec. 4. The data
returned on a result signal is simply an identifier of the external type MYSQL_RES_ptr which
is defined in our API’s implementation. Our framework effectively allows only one result set
per database connection; however, if more result sets are required simultaneously within some
Esterel application, additional connections to the same database may be declared.

In order to ensure that the results are received correctly from the database, the result
signal should be awaited right after the emission of the query:

emit item_db_query("select * from item");

await item_db_results;

If two queries are issued simultaneously, then the result signals must be awaited in parallel or
using immediate await statements in Esterel. This is due to the return signal from a database
query only being present for one cycle; the program must register the signal on the cycle it
is present or it will be lost. Therefore, if the results of two queries are being awaited, the
program must be able to recognise both on the same cycle. For example, suppose we have a
second database connection to the one shown above, with signal names order_db_query for
the query signal and order_db_results for the signal returning the results. If we require a
query on both connections to be issued simultaneously, then this should be done as follows:

emit item_db_query("select * from item");

emit order_db_query("select * from order");

await item_db_results || await order_db_results;

To check the success of the SQL command, the Boolean function check_result should be
called and passed the identifier of the result set, i.e., the value of the input result signal. If it
returns true, then the query has succeeded and the operations described below may be used
to access the data inside the result set. If it returns false, then the data in the result set is
not valid. When querying a database, the query may fail in a number of ways, ranging from
a timeout to an incorrectly formed SQL statement. The check_result function is suitably
abstract so as to account for these problems, and simply lets the Esterel system know the
outcome of performing the query. It is the responsibility of the programmer to check the
success of a query, and any failure modes should be specified in Esterel. An example of how
this may be done using the trap and exit statements of Esterel’s error handling mechanism is
given in the case study in Sec. 5.

For working with a result set that contains data — as opposed to an empty one returned
by, e.g., an SQL insert statement — rows must be declared inside Esterel. Rows are declared
to be of external type MYSQL_ROW that is defined in our API’s implementation. The lifetime of
any data loaded into a row from a result set lasts only as long as the result set itself, i.e., up
to the time the clear_results operation is called. Therefore, rows should only be declared
locally and in such a way that their scope finishes before the call to clear_results occurs.
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The functions provided to operate on the result set and rows will now be described. Most
of the operations mirror the equivalent MySQL functions from the MySQL C API [20] on
which our implementation is based. This is because the MySQL C functions are widely known.
Moreover, at a later date, additional functions can easily be included, if desired. Function
get_next_row is required to load data into a row from a result set. It is passed a result set
identifier and, each time it is called, it will return the next row in the result set. Generally,
the program will need to know how many rows there are in the result set and, therefore,
how many times to call get_next_row. This is accomplished by a call to function num_rows

which, when passed a result set identifier, returns the number of rows in the result set. Once
a row has been loaded from a result set, data can be extracted using a get<type> function
which is provided for each of the native Esterel data types. In addition to a row, an integer
is also passed and indicates the index of the column from where the data is to be retrieved.
The following is a simple example of data extraction using our API:

var row_holder : MYSQL_ROW,

item_name : string,

item_location : integer in

row_holder := get_next_row(?item_db_results);

item_name := getstr(row_holder, 1);

item_location := getint(row_holder, 2);

end var;

In this case, the results are identified by the valued signal item_db_results, and the item’s
name and location are stored in the second and third column of a row, respectively. Note
that the indexing of columns is adopted from the C language and thus starts with 0.

Function num_affected_rows for accessing the result set is used when the result set
contains no data but a user wants to know how many rows were affected by the SQL command.
As such, num_affected_rows can be employed to test the success of an SQL query, e.g., to
check whether a delete query has had the desired outcome.

The final operation provided by the API, to which we have already referred above, clears
the memory occupied by the result set:

procedure clear_results()(MYSQL_RES_ptr);

call clear_results()(?item_db_results);

It is essential that there are no rows loaded from the result set after it is cleared, since the
data within these rows is cleared with the result set as well.

3.2 Remote Result Set API

The Remote Result Set API should be used in situations where it is not feasible to transfer
the entire result set to the system running the reactive kernel, i.e., when both the database
and the result set must be viewed as part of the environment. Since remote communication
must be taken into account, the API is different to the Local Result Set API. This is because
external functions and procedures can only be used in Esterel if their operations may be
considered instantaneous [3]. Consequently, one must either employ Esterel’s task concept or
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must solely rely on signals for the Remote Result Set API. In both cases and as a consequence
of operations on the result set not being instantaneous, the Esterel kernel must be informed
when an operation is complete. This is accomplished by awaiting an “acknowledge” task
completion signal after every operation. In the remainder we focus on our solution via tasks
rather than signals, since this is the most elegant method for representing asynchronous
interaction in Esterel. The interested reader is referred to [27] for an exposition of the solution
employing signals.

An important aim of the Remote Result Set API is to minimise the amount of data that
must be transfered, due to memory or bandwidth being at a premium. For this reason, rows
are transfered to the system running the reactive kernel one at a time. There should be no
overhead in returning the whole row, as opposed to the individual elements, since the row
structure is specified in the query, and therefore it is the programmer’s decision exactly of
what data the row consists. To prevent the complexity of handling multiple rows in the kernel,
each database connection is limited to passing only one row at a time. This is a reasonable
restriction since systems that use this API are unlikely to be performing complex database
manipulations that require multiple rows.

Table 2: Services offered by the Remote Result Set API

procedure appstr() (string, string);

procedure appint() (string, integer);

procedure appbol() (string, boolean);

procedure appflt() (string, float);

procedure appdou() (string, double);

task <db_id>_perform_query () (string);

return <db_id>_perform_query_complete0(boolean);

task <db_id>_get_row () ();

return <db_id>_get_row_complete0(boolean);

task <db_id>_clear () ();

return <db_id>_clear_complete0;

function <db_id>_getint(integer) : integer;

function <db_id>_getstr(integer) : string;

function <db_id>_getbol(integer) : boolean;

function <db_id>_getdou(integer) : double;

function <db_id>_getflt(integer) : float;

Our API for remote result set access is displayed in Table 2. The remainder of this
section explains the API’s services. Similar to the naming of the query and result signals
in the Local Result Set API, each task task_name and function function_name is pre-
fixed with a textual database identifier db_id, which we denote by <db_id>_task_name and
<db_id>_function_name, respectively. Due to the restrictions imposed on tasks by Esterel,
for each occurrence of starting a task in the syntax, a unique return signal is required to
inform the reactive kernel of task completion. We represent this in the API by appending
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each return signal name, e.g., <db_id>_query_complete, with a unique number. For imple-
mentation reasons, this should start at 0 and increment by 1 for each task completion signal
required:

task <db_id>_perform_query () (string);

return <db_id>_perform_query_complete0(boolean);

return <db_id>_perform_query_complete1(boolean);

return <db_id>_perform_query_complete2(boolean);

...

Note that the offered string generation functions are identical to those in the Local Result
Set API, as described in Sec. 3.1.

The main difference to the Local Result Set API is the way in which the results to a query
are accessed. There is now one result set and one row per database defined, and since each
signal is prefixed by a unique string, there is no need for a result set identifier to be returned.
The only data returned after issuing a query is the success of that query. Therefore, after a
query has been issued, the Boolean return signal for that task must be awaited syntactically
just after starting the task:

exec <db_id>_perform_query()("select * from item")

return <db_id>_perform_query_complete0;

await <db_id>_perform_query_complete0;

Note that the signal names <db_id>_perform_query_complete0 in the return and await

statements must match; they are a pair. It is an obligation on the programmer to ensure that
there is no mismatch. This particularity cannot be resolved within the API as it is limited
by Esterel’s restrictions on task programming.

The value carried by the return signal is the same as that returned by the check_result

operation in the Local Result Set API, i.e., it should then be tested to determine whether the
query has succeeded or not. If the query has succeeded and the result set is not empty, then
the first row can be transfered by executing the <db_id>_get_row task. The Boolean return
signal carries the value true if there exists a valid row to load, and false if there are no more
rows available. Now that a row has been loaded, its elements can be accessed in a manner
identical to that of the Local Result Set API, except that the database prefix <db_id> is used
instead, since no row identifiers exist in this Remote Result Set API.

The operations for determining the number of affected rows and the number of rows in the
result set are not supported by MySQL when the result set is stored server side. Therefore,
to step through the rows in a result set, the value of the return signal from the get_row task
must be used as the loop variable. When there are no more rows left, it will carry value false.

3.3 Trade–offs between the APIs

While we have already pointed out the different situations for which the Local and Remote
Result Set APIs have been designed, this section discusses the trade–offs between the APIs.
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The Local Result Set API is based around flexibility and ease of use, which are a conse-
quence of the fact that it is built upon external functions. In contrast, the Remote Result Set
API is not as elegant by comparison, as it requires, e.g., an “operation complete” signal to
indicate the success of a database operation, whereas in the Local Result Set API this is given
as the return value of an external function. Furthermore, the Esterel language specifies that,
for each syntactic occurrence of starting a task, its completion must be awaited by a unique
signal. Therefore, if an Esterel program includes a large number of occurrences of querying
a particular database, then the number of return or task completion signals will be equally
large. It should be noted that the querying of the database in the Local Result Set API is
asynchronous, just as in the Remote Result Set API. However, in the former we do not use
tasks to represent this, but instead rely on signals to illustrate the differences between the two
methods and to emphasise that the database is considered part of the environment. As is the
case regarding ease of use, the Local Result Set API also compares favourably to the Remote
Result Set API regarding performance; this is because of the use of external functions rather
than tasks.

Another difference between the two APIs is the number of rows that can be used simul-
taneously. The Local Result Set API supports as many rows as can be stored in memory,
whereas the Remote Result Set API is limited to accessing one row at a time. However,
since the Remote Result Set API is meant for use on small embedded systems with slow
communication links, it is not expected that database operations requiring many rows will be
commonplace.

Both APIs support connections to multiple databases. In the case of the Remote Result Set
API, this can be used to overcome the limitation of one row per database by simply defining a
second connection to the same database. Since database connections are generally permanent
throughout the time a reactive system is running, our APIs provide no explicit facilities for
connecting and disconnecting from a database. Instead, connection and disconnection is
handled implicitly by the implementation of the APIs (see Sec. 4).

Finally, we discuss the issue of timeouts for when database transactions over–run. Time-
outs must be present on all database transactions or the Esterel system could be left waiting
for a completion signal that will never arrive. Currently, timeouts are simply coded within
our APIs and assumes that each database transaction uses the same timeout value. If vari-
able timeout values should be desired, one could adapt our APIs such that these timeouts
could be encoded directly in Esterel; we leave this for future work. However, if a real–time
database [16] with guaranteed response times is available, then timeouts would no longer be
an issue. In certain application scenarios, it may even be possible that a real–time database
could offer such good response times that the database would no longer need to be considered
as part of the environment and could be directly integrated into the reactive system allowing
the use of external functions and procedures for querying.

4 Implementation of the APIs

This section gives some details on our implementation of the Local and Remote Result Set
APIs; the full source code is freely available for download from [26].
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Both APIs are implemented in a combination of Perl and C and rely on the MySQL
C API [20]. The involvement of the Perl scripting language [25] in the realisation of the
APIs may be surprising at first. The reason is our desire to support multiple databases with
user–declared signal names for emitting SQL queries and awaiting result sets. As reactive
systems typically interact with an arbitrary but fixed number of databases, it is unnecessary
to provide API services for dynamically binding signal names to databases. Even a static
binding should not be defined within an Esterel program at all, as it is not part of specifying
reactive behaviour. Instead, we choose to provide such a binding as a parameter to our
Perl script for each API, which appropriately combines the C code generated by the Esterel
compiler [10, 22] with C code implementing the API services used in the underlying Esterel
program. Perl is an ideal choice to build this combination of C code and API services due to
its fast and simple operators for writing and reading to text files. Furthermore, Perl’s regular
expression feature is very useful for locating code segments that must be copied out of the
Esterel generated C code in a robust manner.

The implementation of the Local Result Set API will be given preference here. This is
because it is similar in spirit to the Remote Result Set API implementation, but does not
require the added complication of threads and deeper knowledge of POSIX [8] as outlined in
Sec. 4.2. The structure of an Esterel program once it has been translated into C, is that of an
automaton which should be called on each instant of the system. Prior to being called, the
input signals should be set up. The automaton will in turn call any output signals that are
emitted on that instant. The implementation of the Local Result Set API is therefore based
around the central automaton call. When a query is sent to the database, the automaton
calls a user–written procedure that records its presence. Similarly, before the automaton is
called, input signals are set up to reflect any response from the database.

4.1 Detailed Implementation of the Local Result Set API

The local result set API script is used as follows:

gendb.pl <Main Module Name>

<Max length of strings and queries>

<DB Name>

<Host>

<User>

<Password>

<Signal name for emitting query>

<Signal name for returning results>

The parameters carry the following meaning:

• Main Module Name:

The name of the module compiled with Esterel; it is assumed that the auto–generated
C code is in <Main Module Name>.c.
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• Max length of strings and queries:

Since all strings must have a fixed–length representation in Esterel, this specifies what
the maximum length is. It must be ensured that the program never exceeds it. This
includes getting strings from the database using getstr(). The type of data that
getstr() is called on should be guaranteed not to exceed the maximum length; e.g., if
the maximum length was 200, the database field could be of type VARCHAR{150}, and
the string could be appended by up to 50 characters by the user to represent the SQL
query.

• DB Name: The name of the database on the host.

• Host: The location of the MySQL DB; if hosted locally, then localhost is to be used.

• User: The username to be used to connect to the database.

• Pass: The associated password.

• Signal name for emitting query: The name of the signal that is used to send a query to
this database, i.e., the name of the signal listed as

output <Signal name for emitting query> : string;

in Table 1.

• Signal name for returning results: The name of the signal that will be awaited for
results, i.e., the name of the signal defined as

input <Signal name for returning results> : MYSQL_RES_ptr;

in Table 1.

The last six parameters may be repeated any number of times for additional databases,
whence a single database can be accessed via multiple connections.

Note that we have intentionally not provided default values for the parameters of the
gendb script. This is because we believe that every application scenario will be different and
that there are no sensible default values.

After the arguments to the script have been processed, it continues by copying the
relevant parts of the Esterel generated C code into the new C code file. For example
the following Perl code copies consecutive lines of EST_FILE to the file OUT until the line
#include "${main_module}.h" is found. During this process, when the line defining the
maximum string length is found, it is replaced with the user–defined string length:

while (($line = <EST_FILE>) ne "#include \"${main_module}.h\"\n") {

if ($line =~ /#define STRLEN/) {

print OUT ("#define STRLEN ${max_strlen}\n"); }

else {

print OUT $line; }

}
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Perl’s treatment of file handles and regular expressions makes this kind of code manipulation
very easy. Note the command $line = <EST_FILE> which reads the next line of EST_FILE
into the variable $line, and the regular expression operator =~ which tests if a string variable
contains a regular expression. If the symbol " occurs inside a sting it must be escaped using
\. Furthermore, variables can be directly included in strings. This occurs in the string
"#include \"${main_module}.h\"\n", where the string value in the variable $main_module
is substituted wherever ${main_module} appears.

The next operation is to define all MySQL variables; this is based on the number of
database connections required by the user. In the code below, the array dbs[$x] stores all of
the user–entered information for the database connection $x. The entry $dbs[$x][0] is the
id for that connection:

for (my $x=0; $x<$num_dbs; $x++) {

print OUT ("\n//Global variables for ${dbs[$x][0]}\n");

print OUT ("MYSQL init_${dbs[$x][0]}, *sock_${dbs[$x][0]};\n");

print OUT ("MYSQL_RES *result_${dbs[$x][0]};\n");

print OUT ("int query_pending_${dbs[$x][0]},

query_suceeded_${dbs[$x][0]};\n");

}

After this, the functions and procedures defined in Table 1 are produced. For example,
the Esterel function get_next_row(MYSQL_RES_ptr) : MYSQL_ROW; is produced like this:

MYSQL_ROW get_next_row(MYSQL_RES_ptr res) {

return mysql_fetch_row(res);

}

Next, the signal output function is produced for each database query signal. This function
is responsible for submitting the query to the database, and for retrieving the result or
reporting a failure. The code is too long to include here, but the interested reader is referred
to view it in the source code of the Perl script where the C functions used to interface with
MySQL are clearly seen [26]. Finally, the main C procedure is produced. It commences
by initialising all database variables and the automaton state. If a connection to a required
database cannot be opened, execution is terminated. The main reactive loop is started, inputs
are set up, and the main automaton step procedure is called.

Sec. 3 mentions that databases are running asynchronously to reactive kernels, since
database transactions are relatively complex and thus cannot be assumed to respect the
synchrony hypothesis. The current implementations of our Local Result Set API does not
implement this intention explicitly. This is because the output procedure called by the reac-
tive kernel to process a database interaction should be able to be considered instantaneous.
However, due to the fact that we wait for the results from the database in the same proce-
dure, this will not be the case. This is however not a problem in the API since, immediately
following a query emission, the result input signal should be awaited. Since there can be
no statement between these two operations, it does not matter that the reactive cycle has
temporally paused. Timeouts are used to make sure the database query output procedure
cannot execute forever, in case of a problem with the connection to the database.
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However, if an implementation of our API should explicitly support the asynchronous
view between synchronous reactive kernels and databases, then it would not be difficult to
do so by introducing threading using POSIX [8]. The query output function would need to
be changed to inform a separate thread that would perform the database operation at hand.
At the start of each iteration of the reactive system, the thread would then be queried to
determine if any database operations have finished. If so, the location of the result set would
be passed to the reactive kernel thread, and the database result input signal would be emitted
in that cycle.

4.2 Discussion of the Implementation of the Remote Result Set API

In the implementation of the Remote Result Set API, the actual database transactions are
handled in a separate thread to ensure that they do not interfere with the periodic nature
of the automaton. One thread is made for each database connection. Its task is to regularly
check if the automaton has requested it to perform a database operation and, if so, it accesses
the associated parameters and performs the operation. When the operation is complete, its
results are reported back through a shared-data store and it waits for the next database
operation.

The passing of information between the thread running the main automaton and a thread
running a database connection must be carefully controlled in order to ensure the automaton
thread does not become stalled. Broadly speaking, this means imposing restrictions on when
data can be sent to a database thread. In terms of our API, this equates to the restriction
that only one database operation can be performed at a time, i.e., the operation must be
fully complete before the next is begun. To explain the interaction between the two types of
threads, we will now give a code skeleton of each thread, followed by an example of how a
typical database operation is accomplished.

MUTEX: Mutex1

THREAD: Database Connection 1 (c)

loop forever

if (acquire lock on Mutex1)

if (database operation to perform)

Perform request;

Record results;

end;

Release lock on Mutex1;

end;

Yield runtime;

end

THREAD: Esterel Automaton

loop forever

// Setup inputs (d)

if (acquire lock on Mutex1)
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if (database operation to perform)

if (database operation completed)

Setup up the automaton inputs with the database operation result;

end

end;

Release lock on Mutex1;

end;

Perform Main Automaton Call; (a)

// Process outputs

For any new task that was started in the last cycle

Call the output function associated with that task (e.g., Start Task 1);

end

FUNCTION: Start Task 1 (b)

wait until (acquire lock on Mutex1)

Record that THREAD: Database connection 1 must perform a db operation;

Release lock on Mutex1;

end

A typical database operation will now be described to illustrate where blocking can occur and
how it is handled. Let us begin by assuming that we are currently executing the automaton
step procedure (a) and that a task requiring a database operation has just been started.
When the automaton step procedure ends, we will execute the output function (b) associated
with the task that was just started. This function will wait until it has acquired a lock on
Mutex1. Once the lock is acquired, it will record that the database operation thread (c) must
perform an operation when it is next scheduled. It then releases the lock and returns.

This is the only part of the process where blocking can occur as it is possible that the
database connection thread has the lock on Mutex1. However, since our API only allows one
operation to be executed at a time, the database connection thread cannot be performing a
time consuming operation, but instead must be checking to see if there is an operation to
execute. This check is very fast, and the lock will be released and its runtime yielded quickly.
This will allow the output function (b) to acquire the lock and complete.

The next time the database connection thread is scheduled after the output function has
completed, it will try to acquire the lock on Mutex1 and find that there is an operation to
execute. It will then execute this operation, record the results, release the lock and yield its
runtime. The next time the setup inputs phase (d) of the main reactive loop is executed (i.e.,
after the database connection thread has finished its operation), it will acquire the lock on
Mutex1 and setup the automaton inputs with the results of the database operation. After
this, it will release the lock on Mutex1, and the API’s side of the operation is complete.

If the acquisition of the lock fails during the input setup phase (d), then the database
operation thread is busy and no results need to be passed back to the automaton; therefore,
the input setup phase for database results can be skipped in this iteration. In case the
database connection is unreliable, Mutex1 could become locked forever; timeouts are included
to prevent this. The full implementation details of the Remote Result Set API can be found
in [26].
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Figure 1: Aerial photograph of our warehouse system constructed using Lego Mindstorms.

5 Case study

In this section we present a case study demonstrating the utility of our APIs: an automated
warehouse storage system modelling a direct order company, where items from orders are
picked, stored and finally removed from the warehouse. This involves producing a warehouse
containing various items and a robot capable of moving the items within the warehouse, for
which we use Lego Mindstorms robotics kits [17] (cf. Fig. 1). Lego Mindstorms provides
both a construction tool with sensors and actuators and a micro–controller, called the RCX,
which is capable of running a reactive kernel programmed in Esterel. The database behind
our warehouse model is that of a standard order system but which also includes mapping
data about the location of the items. As this case study is meant to exemplify the use of
our database APIs, only the part of the solution employing the APIs is emphasised below.
All code and associated scripts for the case study may be downloaded from [26], where the
interested reader can also see a video of our warehouse system in operation.
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5.1 Lego Mindstorms, the RCX and BrickOS

Lego Mindstorms is a platform for building computer–controlled robots using the Lego sys-
tem [17]. At the heart of Lego Mindstorms is the RCX. This “brick” is a small battery–
powered computer which is capable of controlling up to three actuators and reading up to
three sensors. In Lego, actuators are normally motors, and sensors can be light, rotation and
touch sensors. Each RCX also provides an infrared transmitter and receiver used for both
downloading programs from a PC and for inter–RCX communication. The infrared download
device used on the PC can also participate in communications with RCXs.

The RCX provides great flexibility through its re–programmable firmware. BrickOS [7],
formerly known as LegOS, is an open–source replacement firmware for the RCX. It boasts a
number of features that make it considerably more powerful than the standard Lego firmware.
Foremost, it allows programs written in the C language to be executed on the RCX. Obviously,
this is especially important for this project since the Esterel compiler [10] generates C code
as target language. BrickOS also provides infrared communication through the Lego Network
Protocol (LNP) [7] which allows message broadcast and directed transmissions.

Figure 2: Diagram showing the inter–layer signals (arrows) and physical components (trans-
parent boxes). Communication between physical components is via an infrared link.

5.2 Hardware

The hardware requirements of our warehouse storage system are high in Lego Mindstorms’
terms, requiring more sensors and actuators than one RCX can control. Therefore, it is
necessary to use two RCXs, one to control the movement of the robot and the second to
control the employed forklift installed on top of the movement unit, hereafter referred to as
the Movement RCX and Forklift RCX, respectively. Again, communication between the two
RCXs is handled using the infrared link provided on each RCX. Because the Forklift RCX does
not need to communicate with the PC running the database system, the infrared download
tower is set up to allow the following communication to take place: PC to Movement RCX
and Movement RCX to Forklift RCX, as shown in Fig. 2.
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5.3 Software

The software for the warehouse system is structured in three layers: database access layer,
route interpretation layer and hardware layer. Each device used in the system, the two
RCXs and the PC, executes a reactive kernel programmed in Esterel; note that these are
running asynchronously to each other, due to the non-negligible delay caused by infrared
communication channels. The database layer runs on the PC and is responsible for accessing
the warehouse’s database and for generating routes through the warehouse for the robot to
execute. The second layer runs on the Movement RCX and interprets the route sent from
the PC. The third layer is responsible for interacting with the Lego hardware and performs
operations such as move the robot and pick up the item. This layer is present on the Movement
RCX and the Forklift RCX. The signals used for communicating between the various layers
are shown in Fig. 2.

Figure 3: The employed database schema.

5.3.1 Database

Our warehouse’s database models a simple ordering system. Since the main emphasis within
this case study is on retrieving spatial data, the aspects of the database concerning ordering
information are kept as simple as possible: a customer may make multiple orders, each order
is identified by an order id and must contain one or more order lines, and each order line
refers to exactly one item. The corresponding database schema is given in Fig. 3.

Stored separately is a table describing the drop–off bins in the warehouse. A drop–off
bin is used by the robot to place parts of an order before it is complete. When the order is
complete, the items that are contained in the bin are removed, and the bin is then ready for
the next order. For each bin, its location is stored, as is the id of the order in the bin, in case
the bin is in use.

5.3.2 Database access layer

The database access layer uses our Local Result Set API. We chose the Local Result Set API
for our case study since the Esterel program interacting with the database will be running
on the same machine as the MySQL server. Therefore, result sets will be stored in the same
memory as the Esterel program is run in, and can be considered to be accessible instanta-
neously by the reactive kernel. Two connections to the same database are maintained since,
at one point in the program, it is necessary to manipulate the database while retaining the
result set of an earlier operation. The input and output signals for the main connection to
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the database are called orders_query_out and orders_results, respectively, and for the
additional connection stock_query_out and stock_results, respectively, since those are
only used to update stock levels:

output orders_query_out : string;

input orders_results : MYSQL_RES_ptr;

output stock_query_out : string;

input stock_results : MYSQL_RES_ptr;

Since the database access layer’s only function is to wait for an order that needs to be
picked and then to instruct the robot how to pick it, the main module is constructed as a
loop. Inside the loop is a trap statement which handles all the ways in which the database
and the system can fail (see below). Therefore, all failure modes are dealt with in one place,
and the error handling process is simplified.

The operation of the database access layer is roughly as follows. First, an order is retrieved
from the database. One of the lines of this order is then extracted and the item details are
stored locally. The robot is then sent to retrieve all items, one by one, and to deliver them
in an available drop–off bin using a pre–generated route through the warehouse. After each
item has been collected, it is necessary to update the stock level of the item’s type. However,
at this point the database result set still contains uncollected order lines which are required
for later in the program’s execution. Therefore, the second database connection is used to
perform the update without overwriting the result set containing the order’s details.

Since the functionality of the database access layer is quite simple and most database
operations are effectively the same, only two database operations will be discussed. The
retrieval operation starts by emitting the query on output signal orders_query_out and
then awaits the results:

emit orders_query_out("select order_id, customer.customer_id,

name, address from customer, orders where

customer.customer_id = orders.customer_id and

orders.status = ’AWAITING_PICKING’ order by order_id");

await orders_results;

The returned results are then checked for validity using our API function check_result.
If the query has succeeded, then num_rows is called on the result set to see if any rows were
returned. If rows have been returned, then there are orders waiting and, consequently, the
first row is loaded into the local variable row. The details of the row are then retrieved
using the get<type> functions and emitted on the corresponding local signals: order_id,
customer_id, customer_name and customer_address. Now that the result set is no longer
needed, the clear_results procedure is called. The following code captures these steps:

if (check_result(?orders_results)) then

if (num_rows(?orders_results) > 0) then

var row : MYSQL_ROW in

row := get_next_row(?orders_results);
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emit order_id(getint(row,0));

emit customer_id(getint(row,1));

emit customer_name(getstr(row,2));

emit customer_address(getstr(row,3));

end var;

call clear_results()(?orders_results);

else ...

Note that we only look at the first order and then clear the result since we simply wish to
process one order at a time. Once the order_id has been obtained, we are not interested in
the result set any more.

There are two ways in which this operation for retrieving orders can fail: firstly, if the
query fails and, secondly, if there are no waiting orders. Each is catered for by an exit

statement which corresponds to the trap mentioned above:

if (check_result(?orders_results)) then

if (num_rows(?orders_results) > 0) then

%Code snipped

else

call clear_results()(?orders_results);

exit no_waiting_orders;

end if;

else

exit bad_query;

end if;

In each case, the program flow jumps to the end of the loop and emits an appropriate error
message before pausing and then repeating the main loop. Note that function clear_results

must be called after it has been determined that there are no waiting orders, freeing the
memory occupied by the result set.

The program then continues according to the pseudo code shown in Table 3. Generally
speaking, the items in an order are retrieved next. For each item, its location is looked up and
a route to retrieve that item is generated and then executed by the robot. After the last item
is stored, the process is repeated for the next order. The database is updated continually to
reflect the current state of the warehouse (stock levels, etc.) and orders (if an order is being
picked or completed and stored in a drop–off bin). For example, the code below details how
a stock update is performed:

var query_str : string in

query_str := "update item set stock_level = ";

call appint() (query_str, ?item_stock_level - ?item_quantity);

call appstr() (query_str, " where item_id = ");

call appint() (query_str, ?item_id);

emit stock_query_out(query_str);

await stock_results;

end var;
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Table 3: Pseudo code describing the operation of the Esterel program running on the PC
that accesses the database

loop forever

if (orders are waiting) then

Store the details of one order;

if (free drop-off bin is available) then

Store bin location;

Set order status = PICKING;

Get order lines;

while (there are still order lines left to process)

Robot picks up item(s) and drops in bin;

Update the number of items in bin;

Update item stock level;

end;

Set order status = STORED;

Update bin with order number stored in it;

end

end;

PAUSE

end

if (check_result(?stock_results)) then

if (num_affected_rows(?stock_results) <> 1) then

exit stock_update_failed;

end if;

else

exit bad_query;

end if;

call clear_results()(?stock_results);

The generation of the pick–up and drop–off routes is the only non–database–related func-
tion of the database access layer. A function generate_route_to, which is not displayed
here but can be found in [26], generates a string consisting of op codes that represent the
operations the robot must perform to pick up that item and to return to the communication
point in the warehouse. The string is sent to the robot via a signal, and then another sig-
nal indicating the completion of executing the route is awaited. After the pick–up route is
complete, a drop–off route is generated and executed in a similar fashion. By using external
functions to generate the route, the warehouse can be re–designed in any way consistent with
the item locations stored in the database, and only the two route generating functions will
have to be re–written.
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5.3.3 Route interpretation layer

To interpret a route string of op codes, a number of external C functions are provided that
extract parts of the string; details can again be found in [26]. First, a function get_num_ops()

is called to determine how many separate operations the route string contains. A loop is then
repeated this number of times. On each iteration, a function get_op() is invoked to extract
the type of operation and get_param() to extract the parameters to the operation. Once
the operation type has been determined, an emission is made on the appropriate signal with
the value obtained from get_param(). When the robot has completed the operation, either
the movement_op_complete or forklift_op_complete signal is emitted, informing the route
interpretation layer that the robot is ready for the next operation. When all operations have
been performed in this manner, the signal route_complete is emitted, which lets the database
access layer know that the robot has finished its route.

5.3.4 Hardware layer

The Movement RCX is required to run both the route interpretation layer and part of the
hardware layer. To accomplish this, both layers are run in parallel and local signals are
used to communicate between them. To communicate with the hardware layer running
on the Forklift RCX, the output signals pickup_item and drop_item and the input sig-
nal forklift_op_complete are used (cf. Fig. 2). These signals, combined with the signals of
the hardware layer running on the Movement RCX, i.e., signals move_forward, turn_left,
turn_right and movement_op_complete, give the complete range of commands provided by
the hardware layer.

6 Conclusions

This article presented two APIs for interfacing the synchronous programming language Esterel
to the relational database MySQL. The Local Result Set API assumes the result set to a
database query to be stored locally to a reactive Esterel kernel and largely relies on the external
function concept of Esterel. The Remote Result Set API considers the result set to be stored
remotely and is realised via Esterel’s task concept. To the best of our knowledge, this article
provides the first detailed discussion of, as well as APIs for, accessing relational databases from
a popular, industry–strength language which is used for programming embedded controllers.

Both of our database APIs worked well in testing. In particular, the Local Result Set
API is extensively used in our warehouse case study and, although none of the database
operations there are particularly complex, they are representative of the kind of database
operations performed by embedded systems. In contrast to the elegance exhibited by the
Local Result Set API, the Remote Result Set API appears to be slightly more complex.
This is due to the modelling of all database operations as tasks, which became necessary
since remoteness implies that one cannot expect instantaneous responses and, hence, cannot
employ external functions for accessing result sets.

The development of the Local Result Set API also showed that the language extension
features provided by Esterel are indeed sufficient for our application. Given the constraints
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imposed by a synchronous language, we feel that the developers of Esterel have selected an
appropriate set of extensibility options that allow the language to be extended while keeping it
within the synchronous paradigm. Of course, it is possible to abuse these features by allowing
external functions and procedures to execute for a significant portion of time. However, if
used correctly, the extensibility options allow great flexibility, from the ability to represent
abstract data types to being able to pass these data types to external code.

It should be emphasised that the introduction of a database in an Esterel reactive system
using either of our APIs does not undermine Esterel’s synchrony hypothesis. However, since
the response times for returning query results or for accessing remote result sets cannot
be guaranteed, the system can end up waiting for a signal that may never arrive. If the
database is one that can provide guaranteed response times, such as a real–time database,
the problem is elevated. Otherwise, the issue must be solved via timeouts in system design. In
our case study, all database operations are performed at non–time–critical points, whence any
unexpected delay from the database simply results in the system pausing, not malfunctioning.

Finally, it must be mentioned that our approach is not restricted to the particular database
MySQL employed by us. Indeed, our APIs can easily be adapted to those databases that
support the Open Database Connectivity (ODBC) API [24], since the ODBC operations are
quite similar to those provided by MySQL.
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