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Abstract

In this thesis we present three different approaches for constructing generative

models of relational graphs. The central problem to be solved is how to capture

structural variations in a sample set of graphs in such a way that allows new graphs

to be generated from the distribution.

While methods for constructing generative models are well-known when the

sample data are in vectorial form, by comparison little work has been done when

the sample data are relational graphs. This is because working with graphs presents

two problems; firstly, the order over the vertices of a graph is arbitrary and secondly,

the number of vertices in each sample graph may vary. Both these problems mean

that defining statistical quantities such as the mean and variance on a graph set is

difficult.

One solution is to perform an alignment step on the vertices of each sample

graph thus placing them in a canonical order. From this canonical representation

we can construct a vectorial description of each graph and use standard techniques

to construct a parameterized distribution over this vector space. This is the approach

taken in our first generative model, Vectorial Generative Models for Graphs. How-

ever, while it is possible to sample vectors describing new graphs from the defined

distribution, the recovery of a graph from its vectorial representation is a challeng-

ing problem. We investigate a number of different methods of constructing the

vector spaces to aid in this recovery process.

One vector space that is of special interest is that resulting from the spectral rep-

resentation of a graph. By using this representation we gain access to the different

levels of structure present in the graph. We have shown in our work on Mixing Spec-

tral Representations of Graphs that we may combine different levels of structure

from two graphs by mixing the eigenmodes of both graphs in different proportions.

It is this mixing process that results in the spectral representation producing such a

successful generative model.

In our second generative model, Parts Based Generative Models for Graphs,

we adopt a different approach. By segmenting each sample graph into a set of

subgraphs, we can model structural variations in the sample set in terms of the



subgraphs and the connections between subgraphs. Again we insist that our model

is truly generative, in the sense that we may draw new graphs from the sample

distribution.

Our final contribution is to provide a Generative Model for Chemical Structure.

This presents a difficult challenge since chemical structures are constrained by the

laws of chemistry. In our approach we avoid the possibility of generating invalid

chemical structures by defining a method of projecting an invalid chemical structure

onto the nearest valid structure. Therefore, we need not concern ourselves with

generating valid structures directly; we sample from the distribution and correct

samples representing invalid chemical structures using our projection method.

We apply this approach to the domain of drug discovery. First we note that the

function of a drug is largely due to its structural configuration. Therefore, by pop-

ulating the sample set with drugs that are known to be effective against a specific

target, we generate new structurally similar molecules which should also be effec-

tive against the target. We confirm this by using a docking program to simulate the

molecular interactions between the generated structures and the target.
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Symbols & Operators

The following conventions are used for symbols throughout. In addition, for each

chapter a table of symbols detailing their meaning is given at the end of that chapter.

Uppercase calligraphy letters Sets (S,P ,G)

Uppercase letters Single Objects (S, P,G)

Uppercase boldface letters Matrices (X,Φ,Λ)

Lowercase boldface letters Vectors (x, a,µ)

Lowercase letters Functions / Scaler Values (w, ρ, ξ, ζ)

We make use of the following operators:

vec(X) Converts a matrix to a vector.

devec(x) Converts a vector back into a matrix.

N (Mean, V ariance) Returns a sample from the normal distri-

bution.

The spectral decomposition is used in two different ways in this work. When we

consider the spectral decomposition of a matrix representation of a graph then we

use the symbols E and V to represent the eigenvalues and eigenvectors respectively.

When the spectral decomposition is used to perform PCA we use the symbols Λ for

the eigenvalues and Φ for the eigenvectors.
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Chapter1
Introduction

1.1 Overview

In 1736 Leonhard Euler published a paper on the Seven Bridges of Königsberg

which is generally considered to be the first paper on graph theory. The paper

details the now famous problem of how a circular walk may be taken through the

city of Königsberg such that each bridge is crossed exactly once. Euler showed

that no such walk was possible since at least one landmass had an odd number of

bridges. While the solution is elegant, it is the method of arriving at the solution

that is of interest to us. By removing all unnecessary information Euler produced

a relational graph describing the layout of the bridges and landmasses. Relational

graphs are now used as tools for expressing abstract relationships between sets of

objects in almost every scientific discipline.

Put formally, a relational graph is a set of vertices which describe the objects

in question, and a set of edges which connect two vertices and therefore capture

relationships between the objects. As such, relational graphs provide a very general

framework for expressing relational data. One interesting application of relational

graphs is their ability to express chemical structure. By mapping the atoms to ver-

tices and the bonds between atoms to edges a graph may be constructed for a par-

ticular chemical structure. This mapping can be extended if we allow vertices and

edges to take on attributes. For example, we could attribute each vertex with the

atomic label of the atom it corresponds to and each edge could be attributed with

the type of the molecular bond.

1
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In the field of pattern recognition graphs are commonly used to represent ex-

amples if the source data that the processes are being applied to is relational in

nature. However, if pattern recognition algorithms are to be applied to relational

graphs then we must have a method of representing graphs. Constructing a graph

representation is not a simple operation due to the abstract nature and powerful

representational ability of graphs.

The most problematic property of relational graphs is that the ordering in the

vertex set is arbitrary. For example, if we want to determine whether two graphs

are isomorphic then we must either establish a set of correspondences between the

vertices of both graphs or construct a representation that is invariant to vertex order.

A second issue arises when constructing representations for graphs that vary in the

number of vertices. This issue is most apparent when we have one graph that is

a subgraph of another. If we wish to establish that the subgraph really is part of

a larger graph then our representation must be capable of handling graphs with

varying numbers of vertices.

One representation that has attracted considerable interest recently is the spec-

tral representation of a graph. In addition to partially solving the vertex correspon-

dence problem, the representation allows the analysis of different levels of relational

structure present in a graph. This can range from a view favouring local topology

to one considering global graph structure.

A common task in pattern recognition is to construct a model describing the

distribution of sample data. If the data in question are relational graphs then such a

model will explain structural variations in the graph set. For example, if the sample

data were graphs of a certain individual’s face then the model would describe the

variations in facial poses present in the sample data. Such a model could then be

used to classify previously unseen images of people’s faces to determine whether

an image was of the individual that the system was trained with.

The problem of constructing generative models for graph structure can be viewed

as the reverse of the classification operation described above. In other words, given

a set of sample data, how may we draw additional examples from the distribution of

sample data? This process is well known when the data is in vectorial form but, due

to the problems outlined above, it is difficult to construct a vectorial representation

of a relational graph. Furthermore, if we were to use a vectorial representation then
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we would require a reconstruction step that allowed us to recover a graph from the

representation. However, if these problems can be overcome then standard statisti-

cal techniques can be applied to the graphs in vectorial form.

In a paper by Luo et al [75] a method is detailed for constructing a generative

model over a set of graphs by representing each graph as a vector. The variations

in the resulting vector space are then analyzed using principle component analysis

(PCA). However, while it is possible to sample new graphs using their model, a

reconstruction process is required and the authors do not use their model in such

a way. A similar model is suggested by Xiao & Hancock [126] which uses the

spectral representation of a graph to construct a vectorial representation. However,

again the authors do not describe how their model may be used in the generative

sense.

A different approach to constructing generative models for graphs has been ex-

plored by Torsello and Dowe [103]. By making the simplifying assumption that

the observation of each vertex or edge is independent from all others, the existence

of each vertex and each edge is modeled as a Bernoulli trial. To learn the model,

an approach similar to expectation-maximization is used which estimates the cor-

respondences between each sample graph and the model graph on one step and

then updates the model parameters on the next step. While it is possible to sam-

ple from this model, the assumption of vertex and edge independence results in no

co-occurrences of edges or vertices being considered. These co-occurrences are the

ingredients of describing structural variation successfully and therefore this model

would be unlikely to generate examples drawn from the input distribution.

1.2 Goals

In this section we outline the goals of this research, which are two-fold.

Firstly, we wish to investigate methods of constructing generative models for

graphs. In all cases we will require that the models are fully generative in the sense

that we can draw new graphs from the distributions. For each method developed

we want to experimentally evaluate the quality of the solution. This involves the

assessment of the applicability of the distribution we fit to the sample data and the

quality of the generated graphs to name but a few points. Furthermore, we want to
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evaluate under which graph types each approach performs best.

The second goal is to take what we have developed for constructing generative

models for graphs and extend this to the domain of chemical structure. Chemical

structures are an interesting domain because the data is restricted by a high-level set

of constraints resulting from the laws of chemistry. Any methods developed here

would be of interest in the field of drug discovery since the exploration of related

chemical structures frequently occurs in the search for new drugs.

1.3 Thesis Outline

We will now give an outline of the remainder of this thesis.

In chapter 2 we describe the literature relevant to the research detailed in this

thesis. In section 2.1 we begin by considering the construction of graph features.

We then discuss graph similarity which leads to graph matching. Next, we turn to

the field of graph segmentation which is followed by literature on constructing graph

means and medians. Finally, we survey work on generative models for graphs.

In section 2.2 we discuss the field of chemoinformatics which is the application

of computational methods to solve problems in chemistry. This is relevant to our

work on applying generative models to chemical structure. We begin by looking at

methods of representing chemical structure and then proceed to discuss measuring

chemical structure similarity. Next, we survey work on the generation of chemical

structures. Finally, we describe docking which we can use as an evaluation domain

in which the interaction between a molecule and a protein can be simulated.

We begin the description of our work in chapter 3 where we discuss mixing

spectral representations of graphs. This work is a precursor to an actual generative

model based on spectral representations which is described in chapter 4. In chapter

3 we show how the spectral representation allows the mixing of graph structures on

different levels by combining, for example, the global structure of one graph with

the local structure of another. This approach can also be applied to computing an

approximate median spectral graph which we compare with the true generalized

median graph for small sets of graphs.

In chapter 4 we present our first generative models. These models are based

on constructing vectorial representations for each graph in the sample set and then
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fitting a parameterized distribution over the points in the resulting vector space. A

reconstruction step is described that allows a graph to be recovered from a vectorial

representation. In some cases the generated vectors do not display all the properties

that we require for our graph representations, which hinders graph recovery. To

solve this we consider constructing vector spaces that are produced from manifolds

to enforce the properties we require in the generated vectors. We perform an ex-

tensive evaluation of the different models by considering the normality of the data

in each vector space, the classification accuracy, the reconstruction of graphs using

limited components of the model and the quality of the generated graphs. Results

are given for three different data sets; random graphs, Delaunay graphs and graphs

from the COIL data set.

In chapter 5 we present a parts based generative model for graph structure. By

decomposing each sample graph into a set of subgraphs, each sample graph can be

represented by a set of subgraphs and a set of connections between subgraphs. We

then form models on the distribution of subgraphs and the distribution of connec-

tions between subgraphs. By sampling from these models we may generate new

graphs. The approach is especially effective on graph types that lend themselves

to segmentation such as those constructed from images of scenes or articulated ob-

jects. The method is evaluated on both synthetic and real-world data and since the

graphs in question have quite a rigid structure we can actually visualize the gener-

ated graphs.

In chapter 6 we apply the methods previously developed in constructing gen-

erative models to the domain of chemical structures. By developing a method of

projecting invalid chemical structures onto the nearest valid chemical structure, we

can approximate sampling the input distribution while retaining the ability to gen-

erate only valid chemical structure. Furthermore, by populating the sample set with

drugs that are known to be effective for a particular target, we hope to generate

chemical structures that might also be effective for the target. This is possible be-

cause the function of a drug is largely due to its structural properties and our method

will generate structurally similar molecules to those in the sample set. The affinity

of the generated molecules for a specific target can be assessed by performing a

virtual docking between the generated molecule and the 3D structure of the target

protein.
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Finally, in chapter 7 we give our conclusions. This involves a summary of the

contributions we have made along with our most significant results. This is followed

by a selection of future work that we feel would be most valuable to pursue.



Chapter2
Literature Review

In this chapter we will review literature relevant to the work that is described in

this thesis, that is, generative models for graphs and their application to chemical

structure. The first section discusses literature related to graph theory, while in the

second section we will introduce literature from the field of chemoinformatics.

The section on graph theory begins by considering work on the construction of

graph features; these allow graphs to be represented in a more compact and expres-

sive form. We then discuss graph similarity and this leads naturally to the discussion

of graph matching algorithms which may also be used to assess similarity. The field

of graph segmentation is then introduced which considers how a graph may be de-

composed into a set of subgraphs in the most logical manner. Finally, we discuss

graph means and medians and then detail approaches to building generative models

of graphs. Since the literature on generative models for graphs is so sparse, we also

consider generative models on trees.

In the second section of this chapter we will begin our review of chemoinformat-

ics by looking at ways of representing chemical structure. We then discuss methods

of assessing chemical structure similarity. Related work on the virtual construction

of chemical structures and chemical structure libraries is discussed next. Finally,

we describe an important evaluation domain that will be employed later to test the

effectiveness of generated chemical structures. This evaluation domain is known as

docking and allows the simulation of molecule-protein interactions.

7
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2.1 Graphs

2.1.1 Graph Features

The methods discussed in this section are concerned with how the best set of fea-

tures can be extracted from a graph representation. These techniques are often

necessary due to a phenomenon known as the curse of dimensionality [105]. It has

been shown [15] that for a simple look up classifier (that associates a cell of the

feature space with its classification) the number of training examples required to

accurately train the system is exponential in the number of features. Therefore, the

construction of a good set of features accurately describing the structure of a graph

can be a useful tool.

The eigendecomposition of a matrix can be applied to a matrix representation of

a graph to produce a spectral representation. This has produced the field of spectral

graph theory[27] which has led to many different applications and approaches. If X

is a matrix representation of a graph, then the spectral decomposition X = VEVT

produces a set of eigenvalues E and eigenvectors V. If the eigenvalues are ordered

by magnitude they can be used as a feature set with the following two properties:

firstly, they are invariant to vertex order and secondly, they express some of the

structural information present in the graph. The set of eigenvalues is known as the

spectrum of a graph.

Haemers and Spence [50] have enumerated all graphs on 11 vertices and less to

determine the uniqueness of the spectrum associated with the adjacency, Laplacian

and signless Laplacian matrices. If two graphs are structurally different but share the

same spectrum then one is termed the cospectral mate of the other. The main result

of the paper is to give the fraction of all graphs on n vertices that have cospectral

mates. The results show that the signless Laplacian representation has the lowest

fraction of graphs with cospectral mates, followed by the Laplacian and then the

adjacency matrix.

Zhu and Wilson [128] have studied the stability and representational power of

the eigenvalues obtained from various matrix representations of graphs. They use

two methods to gauge the performance of each representation. The first experiment

attempts to find if the relationship between the graph edit distance (section 2.1.2)

and the distance between graph spectra is linear. The second test considers the clas-
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sification accuracy of each representation method when some of the graph structure

is perturbed.

Their results show that all the representations give spectral distances that follow

the graph edit distances closely. However, the heat kernel and path length distribu-

tion representations are clearly the best. In the classification experiments, again the

heat kernel and path length distribution methods perform the best. Next best are the

various Laplacian representations and finally the adjacency matrix.

Luo et al [74] have described a number of methods of constructing feature vec-

tors using the spectral decomposition of a graph’s adjacency matrix. Of the unary

features on eigenmodes they consider eigenvalues, eigenmode volume, eigenmode

perimeter and spectral features based on the Cheeger constant. They also describe

features based on pairwise measures between the eigenmodes such as the inter–

mode adjacency matrix and the inter–mode distances. By ordering the features by

eigenmode magnitude, invariance in vertex ordering can be achieved.

Wilson et al [123] suggest a method for creating graph features that are invari-

ant to vertex order and can capture attributes that appear on the vertices and edges.

The algorithm commences from the Laplacian matrix of a graph. An eigendecom-

position is then performed on the Laplacian and the spectral matrix combining the

eigenvalues and eigenvectors is produced (see equation 3.7).

The spectral matrix is only vertex invariant in the columns, providing the eigen-

values, and associated eigenvectors, are sorted by magnitude. To obtain invariance

in the rows, symmetric polynomials are created. The use of symmetric polynomials

is due to the fact that they are invariant in the order of their inputs. If each element

of a column in the spectral matrix is used as the input for a symmetric polynomial,

then the value of the symmetric polynomial will be the same regardless of vertex

order. If n is the number of vertices then n2 features are generated.

The values of the elements of each column can be reconstructed by finding the

roots of all n2 symmetric polynomials. Since the root order is undetermined, the

elements of each column can only be recovered up to a permutation per column.

Since the permutation of each column could be different, the graph cannot be easily

reconstructed from the features.

Riesen et al [90] describe a method of embedding graphs in a vector space by

using a dissimilarity measure. The algorithm proceeds from a set of graphs S from
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which a subset of the graphs P ⊂ S are selected as a graph prototype set. The

graphs inP are designed to be representatives of the population of S. By computing

the graph edit distance between a graph and all prototypes, a dissimilarity vector can

be constructed for a graph. Hence the vector is of dimension |P|. Clearly the quality

of the prototype set P is of great importance if a meaningful feature vector is to be

produced. The authors suggest five methods of producing the prototype set ranging

from taking a random selection to using a method similar to k-means clustering.

Caelli and Kosinov [22] suggest an approach that differs to those described

above in that it embeds each vertex in a vector space rather than the graph as a

whole. The reason behind this is to allow inexact graph matching which is dis-

cussed in section 2.1.3. Commencing from the adjacency matrix they compute the

spectral decomposition and then project each column of the adjacency matrix into

the eigenspace resulting from the decomposition. However, the features constructed

for two different graphs result from two different eigendecompositions and there-

fore reside in different spaces. To solve this a renormalization step is applied. To

handle graphs of different sizes the spectral information is truncated so it is the same

dimensionality for both graphs. While the individual features are not so useful, the

relative distances between the features and the trajectory of the features as a whole

provide much information about the graph.

2.1.2 Graph Similarity Methods

Measuring the similarity of two graphs is a common problem in structural pattern

recognition. For example, in a data retrieval problem where the data is structural in

nature, we would like to be able to query a large database by computing the similar-

ity between a query structure and the structures contained in the database. Later in

this chapter we will discuss graph matching methods which provide a set of explicit

correspondences between the vertices of two graphs. This correspondence infor-

mation can be used to compute the similarity between two graphs by, for example,

taking the Frobenius norm of the matrix representations of the aligned graphs. First

we will introduce a simpler, more intuitive measure of graph similarity termed the

graph edit distance and then describe similarity methods resulting from the feature

descriptions discussed earlier in the chapter.

Graph edit distance[95, 19] is an approach that seeks to measure the similarity



CHAPTER 2. LITERATURE REVIEW 11

v1
v2

0.1

0.4

0.7

v1
v2

v3
v4

0.1

0.4

0.7

1.0
v4

S = ( insert-vertex(v3),

subsitute(v3, v4) )

insert-edge(v3, v4, 1.0),

Figure 2.1: Transforming one graph into another by a sequence S of edit operations.

between two graphs by transforming one graph into the other. This transformation

can be expressed by an edit path that describes a sequence of operations that may

be applied to a graph to alter its structure. Such operations include the insertion and

deletion of vertices and edges and the substitution of one vertex or edge for another.

Each operation is assigned a cost and it is the sum of the costs of the operations in

the edit path that determine the total cost for applying that edit path to a graph. The

edit distance between two graphs is formally defined as the edit path that transforms

one graph into the other such that the cost for the edit path is the minimum over all

possible edit paths. However, the problem of finding the minimum cost edit path is

NP-complete. Figure 2.1 shows an example of transforming one graph into another

using an edit path.

The idea of using graph edit distance as a similarity measure appears frequently

in the literature and methods of improving its usability have been developed. For

example, Bunke [17] has established a relationship between the graph edit distance

and the maximum common subgraph under a certain cost function. The maximum

common subgraph, termed mcs(G1, G2), is a subgraph of both G1 and G2 such that

there is no subgraph possible with more vertices. The cost function in question is

as follows: vertex insertions and deletions have cost 1, identical vertex and edge

substitutions have cost 0 but different substitutions have cost ∞ and finally edge

insertions or deletions have no cost.

While this cost function appears simple, the authors only consider complete

graphs. This simplifies the proofs and results in no loss of generality. A standard

graph is mapped onto a complete graph by setting the weights of edges that do not

appear in the standard graph to zero in the complete graph. In this way the vertex

insertions and deletions actually encode the edge insertions and deletions.

The graph edit distance d(G1, G2) and the maximum common subgraph are
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related as follows:

d(G1, G2) = |G1|+ |G2| − 2|mcs(G1, G2)| (2.1)

Bunke [18] has conducted an extensive analysis of cost functions and related

the concept of graph edit distance to graph isomorphism and subgraph isomorphism

under certain cost functions. In the tree domain, Torsello and Hancock [104] have

shown how the tree edit distance may be estimated from the minimum description

length of a tree set that they use in their generative model of tree structure (section

2.1.6).

Most methods that construct graph features produce feature vectors suitable

for measuring graph similarity. For example, the feature vectors constructed us-

ing symmetric polynomials by Wilson et al [123] are suitable for measuring graph

similarity. The feature vectors may be compared directly or projected into a low di-

mensional space using PCA to help visualize the similarities. The authors describe

experiments involving graphs from the COIL data set which consists of sequences

of images of various different objects. When graphs of different objects are con-

sidered, the resulting feature vectors do a good job of separating the objects in the

vector space. In other words, similar graphs have similar feature vectors which in

turn give high similarity. Furthermore, when a sequence of images are considered

(i.e. when the camera moves very little between images) the resulting points in the

vector space show a smooth trajectory.

2.1.3 Graph Matching Methods

In this section various methods to perform graph matching will be discussed. The

general task to be solved when matching two graphs is to establish correspondences

between the vertices of the two graphs. Of course, this is a hard task due to the

arbitrary ordering of the vertices. Depending on the algorithm, a many-to-many

vertex mapping may be found. However, most approaches solve the problem of

finding a one to one mapping between the vertex sets (V1 and V2) of two graphs G1

and G2. The inclusion of the vertex ∅ in the vertex sets of both graphs (V1 ∪ ∅ and

V2 ∪ ∅) allows vertices from one graph to be in correspondence with no vertices

in the other graph, or alternatively, mapped to a dummy vertex. The quality of
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the mapping is indicated by some criterion, on which the mapping function is then

optimized.

The two main approaches to solve this problem are search based methods and

nonlinear optimization methods. Search based methods construct a state space rep-

resenting all the possible mappings between the two graphs, this space is then

searched to find the mapping that minimizes some criterion. For example, Wang

et al [113] describe the use of a genetic algorithm to search this space of map-

pings. However, due to the fact that the state space grows exponentially in the

number of vertices of the graphs being matched, even advanced search techniques

such as genetic algorithms are unable to provide mappings for large graphs in a

reasonable time. For this reason nonlinear optimization approaches have attracted

great interest. Some methods that fall under this field are those involving proba-

bilistic relaxation[122], spectral methods [106, 22] and methods enforcing two-way

assignment constraints [48, 107]. We now study these approaches in more detail

below.

Umeyama [106] discuses an approach to solve the weighted graph matching

problem in both the directed and undirected cases for graphs of the same size. The

method uses an eigendecomposition on either the adjacency matrix, A, (in the undi-

rected case) or a Hermitian matrix computed from the adjacency matrix (in the di-

rected case). If two graphs G1 and G2 are isomorphic then the permutation matrix

P that solves PA1P
T = A2 provides the mapping. However, this equation is very

difficult to solve exactly so Umeyama details a method that can provide a permu-

tation matrix P′ that nearly solves the problem such that error associated with the

mapping P′ is as close to zero as possible.

Umeyama shows that the permutation matrix P′ that maximizes tr(P′T V̄1V̄
T
2 )

(where V̄1 and V̄2 refer to the absolute eigenvectors of graph G1 and G2 respec-

tively) will be very close to the optimum permutation matrix when G1 and G2 are

nearly isomorphic. Finding P′ such that it maximizes the trace can be accomplished

by the Hungarian method which runs in O(n3) time.

The permutation matrix produced by the method becomes progressively worse

as the two graphs in question become more distant to each other. Performing hill-

climbing or other optimization methods on the nearly optimal permutation matrix

can improve the solution but the bottleneck on the quality of the solution is the
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distance between the two graphs in question.

Scott and Longuet-Higgins [99] describe an algorithm that works on the dis-

tance between features in two related images and gives the correspondences be-

tween them. The correspondences are given by a pairing or proximity matrix that

indicates the likelihood of two features being in correspondence. The algorithm

commences by determining the Gaussian proximities of the distance between two

features i and j, rij:

Gij = exp
−r2ij
2σ2

(2.2)

The σ variable provides a convenient method to study the difference between

large and small displacements, in other words, local or global structure. This is

similar to the role of the time variable in the heat kernel (section 3.2.4). The method

continues by performing singular-value decomposition (SVD) on the matrix G =

TDU. Next, D is conditioned by replacing all diagonal elements by 1, so the

pairing matrix becomes P = TIU.

The element Pij indicates how much the feature associated with row i is in

correspondence with the feature associated with column j. If Pij is the largest value

in row i and column j then the two features represented by the row and column are

in one-to-one correspondence.

Their results show that with a sufficiently large value of σ the algorithm can

recover one-to-one correspondences between images affected by translation, sheer

deformation, expansion or any combination of the three. However, the algorithm is

not very successful when one image is a rotation of the other.

Wilson and Hancock [122] describe a method of graph matching based on a

discrete relaxation labeling process. The structural correspondences between the

two graphs are posed in terms of correspondences between substructures termed

super–cliques. A super–clique consists of a central vertex and all other vertices at a

distance of one edge. Associated with each super–clique to super–clique mapping

is a probability and using a maximum a posteriori (MAP) criterion they aim to find

the set of mappings such that the product of probabilities is maximized.

However, it is not always the case that one super–clique will map exactly onto
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another due to vertices having different edge degrees. Therefore, a super–clique

may be padded with extra vertices to accommodate size differences and this incurs a

penalty in the probability of the mapping. Furthermore, all permutations of vertices

in the perimeter of the super–clique must be considered and as such a probability is

associated with mapping to each permutation. The algorithm proceeds by greedily

assigning the mapping with highest probability to each vertex in order. Initially

these mappings have high error associated with them and this is represented by an

error term in the computation of the probabilities. As the algorithm iterates, this

error term is reduced in a manner similar to simulated annealing until convergence

occurs. The authors show the utility of their approach by matching aerial imagery

of road networks and hedge structures.

Gold and Rangarajan [48] describe a graph matching method that uses two key

ideas. These are iterative projective scaling and graduated non-convexity. Iterative

projective scaling is used to enforce two-way assignment constraints, i.e. the re-

quirement that the vertices in both graphs are equally constrained. The second tech-

nique used is graduated non-convexity which turns a matrix describing the (discrete)

mappings into one containing continuous values. This provides protection against

getting stuck in local minima by providing a control parameter that can move the

solution from continuous (at the beginning of execution) to almost discrete (near

the end of execution).

Since the graduated non-convexity technique only provides an almost discrete

matrix at high values of the control parameter, it is necessary to perform some addi-

tional computation on the non-discrete match matrix to transform it into a discrete

version. The authors use a simple heuristic that sets the maximum element in each

column to 1 and all other values to 0. However, using this heuristic can result in

a sub-optimal mapping since assignments are determined in a sequence rather than

simultaneously. One algorithm that considers all the mappings simultaneously is

the Hungarian algorithm [63].

Van Wyk and Van Wyk [107] describe an algorithm similar to that of Gold and

Rangarajan. Instead of using iterative projective scaling to enforce two-way as-

signment constraints, they use a POCS (projections onto convex sets) method. The

two convex sets used in this case are the set of matrices that satisfy assignment con-

straints on the columns and the set of matrices that satisfy assignment constraints on
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the rows. Each of these corresponds to the assignment constraints in one direction

and used together they can enforce two way constraints. The algorithm proceeds

as that of Gold and Rangarajan’s with the row and column normalizations being

performed using the POCS approach.

Solving the one-to-one vertex correspondence problem is generally a good solu-

tion to matching graphs, however sometimes it can be more appropriate to produce

a many-to-many matching. This gives far more flexibility and depending on graph

structure allows for better matching. The graph features described in 2.1.1 by Caelli

and Kosinov [22] can be used for such an approach. As described earlier the ver-

tices of two graphs can be projected into a common subspace. With these two sets of

points describing the vertices of each graph the correspondences can be established

using a clustering step. This clustering, combined with the spectral representation’s

graph size invariant information, allows many to many correspondences to be es-

tablished. The power of the approach comes from its ability to perform matching

between substructures of different sizes in some parts of the graph, and in others to

retain the possibility of one to one matching.

2.1.4 Segmenting Graphs

Perceptual grouping methods seek to split up a graph into k subgraphs such that by

some measure of similarity, the similarity between vertices in different subgraphs is

low but within the subgraph the similarity is high. This is usually accomplished by

performing a cut on the graph. If a graph G is split into two subgraphs G1 and G2

with vertex sets V1 and V2 respectively, then the value of the cut is the sum of all

edges that begin in one subgraph and end in the other.

cut(G1, G2) =
∑

u∈V1,v∈V2

wE(u, v) (2.3)

The weight function on the edges wE is described in section 3.2. Various differ-

ent cut criteria have been suggested that try to split the graph up in the most logical

way possible. One of the first criteria proposed was Wu & Leahy’s Minimum Cut

[124]. This method aims to minimize the maximum cut across all subgraphs. How-

ever, in practice this approach does not perform particularly well, tending to cut
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very small subgraphs without taking into account the global structure.

Shi & Malik’s Normalized cut [100] solves this problem by computing cut cost

as a fraction of the total edge connections to all vertices in the graph. The normal-

ized cut is defined as follows:

Ncut(G1, G2) =
cut(G1, G2)

assoc(G1, G)
+

cut(G1, G2)

assoc(G2, G)
(2.4)

The total connection weight of edges between vertices in the subgraph G1 and

the original graph G is given by assoc(G,G1), which has the same mathematical

definition as cut(G,G1). Using the assoc value as normalization prevents cuts tak-

ing place where the number of vertices in the two sets is vastly different. The algo-

rithm commences from a matrix describing the similarities between the vertices of

the graph. Next an eigendecomposition is performed on the similarity matrix. The

authors show that the eigenvector associated with the second smallest eigenvalue,

also known as the Fiedler vector, will partition the graph according to the Ncut def-

inition above. Finally, some measure is made to determine if the graph has been

segmented enough (or if some fixed number of partitions is reached) and if not,

then the process recursively repeats. The authors evaluate their method on both still

images and motion sequences. The algorithm is shown to give good performance in

both cases.

2.1.5 Median and Mean Graphs

The median graph of a graph set can serve as a useful tool and as such has received

much attention in the literature. One use is as a model for representing a set of

graphs in a compact notation. It can also serve as the starting point for generating

new graphs or expressing the variation in a graph set. Given the mean graph, each

graph in the set can be produced from the mean by applying some transformation. If

the distribution of these transformations can be found, then it can be sampled from

and used to generate new graphs.

Jiang et al [58] provide two different definitions for median graphs. The differ-

ence is in the space of graphs in which the median may be drawn from. The first

is termed the generalized median graph and may be drawn from the space of all

graphs. If we let U be the set of all graphs and S = {S1, S2, ..., Sn} be the set of
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graphs we are attempting to find the median for, then the generalized median graph

GM is defined as follows:

GM = argmin
S∈U

|S|∑
i=1

d(S, Si) (2.5)

where d(S1, S2) is a distance measure. In the second definition, termed the set

median, the median graph may only be drawn from the set of graphs in question. It

is defined as such:

GM∗ = argmin
S∈S

|S|∑
i=1

d(S, Si) (2.6)

Both definitions minimize the sum of distances to the graphs in the set S. The

generalized median is drawn from a larger set of potential medians and is therefore

a better representation than the set median. However, the complexity of finding the

generalized median is far greater than finding the set median.

We begin by discussing the simpler problem of computing the mean of a pair

of graphs. Bunke and Günter [20] solve this problem by first finding the set of edit

operations that transform one graph into the other. A cost is then assigned to each

edit operation with the sequence of edit operations having total cost c. The mean

graph may then be produced by applying the sub-sequence of edit operations with

cost c
2
. A weighted mean can be produced by applying the appropriate proportion

of the edit path. Note that this weighted median may not be unique. The authors

apply their approach to line drawing analysis and produce sequences of weighted

means between the line drawings of two different letters.

Bunke et al [21] describe two methods for computing the generalized median

graph of a set of graphs. The two methods they evaluate are a complete search using

A* and a genetic algorithm. The two algorithms perform very differently, firstly, the

complete search using A* has exponential worst case execution time and very high

memory requirements. In practice both these properties mean that the algorithm is

infeasible for anything other than very small graph sets. The genetic algorithm’s

performance varies according to the population initialization chosen, which can ei-

ther be a random initialization or one based on the input graphs. However, in both

cases the time complexity is far better than the A* method.



CHAPTER 2. LITERATURE REVIEW 19

In an effort to reduce the size of the search space in which the generalized me-

dian graph can reside, Ferrer et al [39] describe a method to place an upper bound on

the sum of distances (SOD) from the generalized median graph to all graphs in the

set. This is done by establishing a relationship between the generalized median and

the maximum common subgraph of the graph set. We first denote Ge as the empty

graph and Su as the union graph of the set. Then for any pairwise partitioning p of

the set S, where SOD(p) is the SOD between the elements of the partition, then the

bound on the SOD from the median GM to all graphs in S must be as follows:

max(SOD(p)) ≤ SOD(GM) ≤ min({SOD(Ge), SOD(Su)}) (2.7)

They prove that the sum of distances to the maximum common subgraph of S,

mcs(S), must be the upper bound on the sum of distances to the generalized median

GM . Thus the following inequality must hold true:

max(SOD(p)) ≤ SOD(GM) ≤ SOD(mcs(S)) ≤ min({SOD(Ge), SOD(Su)})
(2.8)

Another result by Ferrer et al [40] places a bound on the number of vertices in

the generalized median graph. This improves the bounds introduced by Jiang et

al [58] which states, very generally, that the generalized median graph must have

more than zero vertices but less than the sum of the number of vertices of all graphs

in S. The new bound relates the size of GM to the size of the maximum common

subgraph mcs(S) and the minimum common supergraph MCS(S) as such:

0 ≤ |mcs(S)| ≤ |GM | ≤ |MCS(S)| ≤
|S|∑
i=1

|Si| (2.9)

The result of this is that more pruning in the A* search can be performed and

more chromosomes in the generic algorithm can be disregarded, resulting in a lower

search time. Recently, Ferrer et al [41] have used the above two results [39, 40]

to detail a new genetic algorithm for finding the approximate generalized median

graph. The new bounds are used to reject chromosomes representing median graphs

that fall outside the space of where the median graph may lie. They present very

encouraging results when their approach is applied to a data set representing web
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pages as graphs.

Using the graph embedding method of Riesen et al [90] that was described

in section 2.1.1, another two methods for generalized median computation have

been developed. The first searches for the generalized median graph in a reduced

space[42] while the second directly computes an approximation of the generalized

median graph[43]. We will discuss the search based approach first.

The algorithm of Riesen et al is used to produce a vector describing each graph

in the set S. However, instead of selecting a subset of the graphs in S to form the

prototype set, all graphs in S are used as prototypes. This means that the dissimi-

larity matrix is |S| by |S| in size and the feature vector for each graph records the

dissimilarity to all graphs in the set S.

The dissimilarities are calculated using a restricted graph edit distance as dis-

cussed in section 2.1.2 where deletions and insertions of vertices have a cost of 1,

deletions and insertions of edges have a cost of 0 and vertex and edge substitutions

have a cost of 0 of∞ depending on whether the substitution is identical or not. This

means that the Manhattan distance can be used to compute the mean of the feature

vectors. However, although this mean feature vector represents the median graph,

it can not be directly translated back into a graph and must instead be used to limit

the search space.

Although the search space should be exponential in the sum of the vertices of

the graphs in S, it has been shown (Section 5.3.2 [36]) that under the cost function

mentioned above, the search space can be reduced and is composed of the vertex

induced subgraphs of the minimum common supergraph of S. The search space

of the generalized median graph can be visualized as a rhombus with the minimum

common supergraph at one end and the empty graph at the other. The graphs from

the set S must all fall within this rhombus.

The mean feature vector describes the dissimilarly between the median graph

and every graph in S. Hence, if the dissimilarity between the generalized median

graph and a graph S1 ∈ S is a then only graphs with an edit distance of a from S1

must be searched. The graph in S that places the maximum restriction on the search

space (smallest dissimilarity) is selected to restrict the rhombus search space. Thus

the graph that has the minimum SOD to the graphs in S which is selected from the

reduced search space must be the generalized median. The authors describe good
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Figure 2.2: The triangulation sequence from the approximate generalized median
algorithm of Ferrer et al [43].

results, in terms of time complexity, when the approach is applied to line drawings

of letters.

The algorithm that computes the approximate generalized median graph pro-

ceeds as described above until the search stage. Instead of a search, the approx-

imate generalized median is recovered from the vector space using the approach

described earlier[20] to compute the weighted mean of a pair of graphs. The algo-

rithm proceeds by finding the three graphs {S1, S2, S3} ∈ S that are closest in the

vector space to the mean vector1. A triangulation procedure is then performed on

the points representing these graphs which we will denote s1, s2, s3. First, the mean

point m of s1, s2, s3 is found. A line is projected, from s1 through m intersecting the

line between s2 and s3. Let us call the point of intersection m23. Using the distances

between the intersection point m23 and the graph points s2 and s3, a weighted mean

graphM23 representing the graph at m23 can be computed (see figure 2.2 left pane).

Finally, the distances between m23, m and s1 are used to compute the weighted

mean graph between M23 and S1 (see figure 2.2 right pane). This graph will be

used as the approximate generalized median.

The authors evaluate the quality of the approximate generalized median graphs

by comparing their SOD to all graphs in the set with the SOD from the set median

to all graphs in the set. It is not possible to compare the true generalized median

graph with the computed approximation due to the size of the data sets, which make

1Since it is not necessary for the mean vector to represent the dissimilarities to graphs in the set
as integers (as in the search based approach), the Euclidean mean is used instead of the Manhattan
mean.



CHAPTER 2. LITERATURE REVIEW 22

computation of the true generalized median graph impossible. They show that in

all cases the quality of the approximate generalized median is better than the set

median.

Ferrer et al [37] extend the definitions of the generalized median and set median

to the spectral domain. As with the non-spectral definition, the set spectral median

must be a graph chosen from the set while the generalized spectral median may

be taken from the set of all graphs. The spectral matrix chosen is the one that

maximizes the sum of the correlations between it and the spectral matrices of all

other graphs in the set.

Due to the restrictive computational complexity of computing the spectral gener-

alized median the authors suggest two approximate methods, an incremental method

and a hierarchical method. They provide details for the incremental method which

we describe briefly here. Given a sequence of graphs (S1, S2, ..., Sn), the first graph

S1 is selected and its spectral representation is computed. This results in the pair

(S1,V1) = (GM ,VM) which represents the initial generalized median graph. Next,

they select another graph S2 and compute V2. Using Umeyama’s algorithm [106]

they find a labeling between S2 and GM (using spectral matrices V2 and VM ) and

use this to perform an update to the median graph GM . An eigendecomposition

of the resulting median graph is performed which produces a new spectral matrix

VM . The algorithm iterates updating the median with the remainder of the graph

sequence. Since a sequence is used it is possible to produce different medians de-

pending on the order of the graphs in the sequence.

Ferrer et al [38] compare their approach described in [37] of computing the

median spectral graph using incremental updates to the work we describe in this

thesis in chapter 3. We propose the computation of the median spectral matrix

directly through a single averaging operation rather than a series of incremental

adjustments. Ferrer et al show that both methods perform approximately the same

except under severe noise in which the incremental method outperforms the direct

averaging method.

Traditionally, using the generalized median of a graph set for pattern recognition

tasks has been limited to simple examples due to the high computational complexity

of constructing it. However, with the recent advances detailed in [42, 43, 41], its

usage for real world data sets is becoming feasible.
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2.1.6 Generative Models

We now turn to discuss work on constructing generative models for graphs. While

there is much literature on generative models in the vectorial domain there is little

work in the graph based domain. Nevertheless, we survey the few pieces of such

work.

Luo et al [75] detail a method for constructing a generative model over a set of

graphs. By vectorizing the adjacency matrix of each sample graph they construct a

vectorial description such that statistical techniques applicable to vectorial data may

be used. Before this can occur however, the graphs in the sample set are aligned

using the algorithm of Luo and Hancock [73]. Differences in graph sizes are dealt

with by padding the smaller graphs with dummy vertices.

With the aligned padded adjacency matrix Ak of each sample graph Sk to hand

they proceed to vectorize each matrix.

ak = vec(Ak) (2.10)

They construct a linear deformable model over the resulting vectors which can

be used to express the structural variations present in the sample set of graphs. In

practice this means computing the mean µ and covariance Σ of the vector set and

then performing an eigendecomposition on the covariance matrix. This results in

the diagonal matrix of ordered eigenvalues Λ and a matrix of ordered eigenvectors

Φ. The ordered eigenvector matrix Φ gives the principle components of variance

in the data and the set of eigenvalues determines the degree of variance associated

with each component. This allows a vectorial description of a sample graph to

be represented as a mean summed with a vector determining the specific way that

graph structurally varies. This vector is projected into the principle components of

the distribution. This is illustrated by the following equation:

âk = µ + Φb (2.11)

where b is a parameter vector describing the degree of variation experienced by

a graph Sk in the direction of each principle component. The authors proceed to use

their model to explore the structural variation present in a set of graphs representing

faces.
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A similar generative model is described by Xiao & Hancock [126]. The method

constructs a point distribution model representing the structural variation in a set

of graphs. The process commences from the heat-kernel representation of each

graph. To obtain a coordinate matrix Yk for each graph Sk, the Young-Householder

decomposition H = YT
k Yk is performed on the heat-kernel. Given that Ek and Vk

result from the eigendecomposition of the normalized Laplacian of a graph Sk, the

coordinate matrix is computed as follows.

Yk = exp [−1

2
Ekt]V

T
k (2.12)

To handle graphs of different sizes the coordinate matrices are truncated. The

truncated coordinate matrices are aligned using the method of Scott and Longuet-

Higgins [99] where the largest graph is selected as the reference. As in the previous

work, PCA is performed on the aligned truncated coordinate matrices to construct

the model.

Experiments are performed on object sets from the COIL database. The trajec-

tory of the coordinates for an object sequence appear to vary smoothly throughout

the vector space. In addition, they assess the compactness of their model by mea-

suring the error involved in recovering a graph using a reduced set of components

of the model. For small values of the time parameter in the heat kernel they achieve

low error rates with limited components.

Torsello [102] describes a generative model for graph structure based on impor-

tance sampling. By making the simplifying assumption that the observation of each

vertex and each edge is independent from all other vertices and edges, the existence

of each vertex is modeled as a Bernoulli trial. However, examples from the model

can only be generated by removing a vertex from the model graph. This means that

a vertex is required in the model for every vertex in the sample graphs, whether that

vertex is key to the structure represented in the set or just noise.

Nevertheless, this provides a generative model of the graph set but the corre-

spondences between each sample graph and the model graph are unknown. To solve

this an importance sampling method is introduced to establish the correspondences.

Using the derivative of the likelihood of the model, a maximum likelihood estima-

tion of the model parameters is performed. The success of the model is gauged using

Delaunay graphs constructed from images of scenes and shock graphs constructed
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from objects.

Torsello and Dowe [103] extend the model and correspondence step using an

EM like approach. As above they model the existence of each vertex as a Bernoulli

trial but to relax the requirement that every vertex must be represented in the model

graph, they introduce a two part model. This consists of a structural part of the

model, that represents the core structural variations in the set, and a noise model

that allows the generation of vertices that do not correspond to any vertex in the

core model graph. They also improve on the previous approach by allowing the

inclusion of attributes on the vertices and edges.

To learn the model, vertex correspondences between a sample graph and the

model are separated from the model parameters which facilitates a two step, EM

like, estimation approach. On each step the correspondences between each sample

graph and the model are updated and then the model parameters are re-estimated

given the updated correspondences. The model parameters are determined using a

minimum message length criterion which states that the best model describing the

data is the one resulting in the shortest length description of both the model and

the encodings of the data given the model. The authors apply their approach to

classifying shock graphs of shapes and show that using their model with attributes

on the sample graphs results in good performance.

While it is possible to sample from the models proposed by Torsello [102] and

Torsello and Dowe [103], the assumption of vertex and edge independence results

in no co-occurrences of edges or vertices being considered. These co-occurrences

are the ingredients of describing structural variation successfully and therefore these

models would be unlikely to generate examples drawn from the input distribution.

Torsello and Hancock [104] propose a generative model for tree structure that

makes use of the method similar to the minimum message length criterion detailed

above. By constructing a tree-union describing all trees that belong to a certain

class, a mixture model of tree-unions can be constructed that can be used for classifi-

cation and clustering. They associate a probability distribution with each tree-union

that explains the structural variations present in that class. This distribution, along

with the tree-union and correspondences from samples to their class union, are all

learnt in an optimization framework. This optimization process works by merging

tree-unions such that the length of the description of the trees from the (now com-
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bined) classes is minimized. By starting with a separate model for every sample

tree, similar models can be merged hierarchically until there are no further merges

possible that reduce the description length. The authors evaluate their method on

shock graphs and show that it is capable of handling structural noise effectively.

2.2 Chemoinformatics

We will now describe literature in the field of chemoinformatics[69, 51] which

we will make use of when we apply our generative models to chemical structure.

Chemoinformatics is a relatively new field which studies the application of compu-

tational techniques to chemistry. The main topics discussed in this section are the

representation of molecules, assessing molecule similarities, generation of chemical

structure and docking of molecule-protein complexes.

2.2.1 Molecule Representations

It is difficult to obtain a complete representation of a molecule by using anything

less than a full 3D description of the location of the atoms, the type of bonds be-

tween atoms and the molecular surface resulting from the atoms and bonds. This is

due to many small molecules being steroisomers2 that, when described in only 2D,

lead to a number of possible 3D configurations.

Nevertheless, 2D representations of molecules are used extensively, with the

line notations we are used to seeing being the most common. It is clear that 2D

line notations of a molecule can be easily mapped onto a graph by expressing atoms

as vertices and bonds as edges. This mapping, along with other applications of

graph theory to chemistry, are discussed by Balaban [11]. Basak et al [14] describe

calculating 90 graph theoretic properties for a set of molecules. By performing

PCA on the properties they clustered the molecules and showed that the groupings

reflected intuitive ideas of chemical similarity.

With a mapping from chemical structure to graphs to hand, standard represen-

tations such as the adjacency matrix can be used to represent molecules. Dugundji

and Ugi [34] describe a matrix representation known as the bond-electron matrix

2Molecules which are steroisomers may exist in a number of different 3D structures, and most
small, drug-like molecules have this property.
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that has bond values in the off-diagonal elements and the number of free valance

electrons of an atom in the associated diagonal element. This matrix has a number

of useful properties such as the easy computation of the number of valence electrons

present in a molecule. This, combined with knowledge of the standard number of

valance electrons an atom possess, can be used to determine if an atom carries

a charge. More recently, Wilson [121] has used Hermitian matrices to represent

properties on graphs such as atomic number and bond strength.

Despite the elegance of matrix representations, connection tables are the pre-

ferred method of molecular representation since any number of additional attributes

on an atom, a bond or the molecule can be easily expressed. Connection tables

contains two lists, one detailing the atoms and a second describing the bonds be-

tween them. Most chemistry toolkits (such as Open Babel [4] and the Open Eye

Chemistry Toolkit [5]) support molecules entered in connection table format, with

the most wide spread of these being the SDF and MOL2 data formats. Connection

table notations can also express 3D structure by associating a coordinate attribute

with each atom.

Molecules may also be described by linear notations, the most popular of these

being SMILES (Simplified Molecular Input Line Entry System). Devised by Weininger

[114], the notation allows the description of chemical structures by character strings.

In the notation: atoms are represented by their atomic label, neighboring atoms are

placed adjacent in the string, branches are indicated by parentheses and ring sys-

tems are described by labeling the two atoms completing the ring with digits. This

is the notation of choice in the Daylight Toolkit [7]. In some cases there are mul-

tiple SMILES strings that describe the same molecule. Therefore, it can be useful

to have a method of computing a canonical SMILES string. However, there is no

well documented way to do this in the literature and various approaches have been

developed independently. A newer form of SMILES called InChI [8] provides a

unique description of a molecule but is far less human-readable.

Markush structures [12] are another type of molecular representation and were

designed for identifying chemical structures which are under patent. Often a patent

covers a wide range of different molecules and this is indicated by identifying a core

part of the molecule (which stays constant) with a number of attachment points

and a set of rules governing which chemical structures may be attached to each
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attachment point. Markush structures have many uses beyond patent identification

and Barnard et al [13] have used them for clustering large libraries of molecules.

The fingerprint[1] of a molecule, made popular by the Daylight Toolkit, is a

method of describing a molecule through a set of structural keys. Each key in-

dicates whether a particular substructure is present in the molecule. Fingerprints

are normally represented as bit vectors where each bit represents the presence of

the corresponding substructure. This representation is very popular for computing

similarities and performing substructure searching as discussed in the next section.

However, due to a limited number of structural keys being available, it is possible

that two molecules will map to the same fingerprint. Therefore, any approach using

fingerprints must often be combined with a more exhaustive approach.

Finally, we consider very simple molecular descriptors that apply to the molecule

as a whole. For example, molecular weight can be used as a very simple molecular

descriptor. Another is hydrophobicity which determines the degree that a molecule

is repelled from water. This has an important affect on the transport and activity

of drugs in humans and as such makes an interesting descriptor of molecules to be

used as drugs.

One would think that such simple descriptors would be of little use, but sets

of rules for determining the applicability of a molecule as a drug often make use of

these descriptors. For example, Lipinski’s rule of five [72] is a rule of thumb to eval-

uate druglikeness and is described using simple descriptors. It has been shown by

Xue et al [127] that combining short fingerprints with whole molecule descriptors

results in a better description of a molecule than a long fingerprint used by itself.

2.2.2 Computing Molecule Similarities

Efficient methods of computing molecule similarities are of great interest in chemoin-

formatics. This is due to the fact that structurally similar molecules often have

similar properties. This has been observed by Johnson and Maggiora [59] as the

similar property principle and by Patterson et al [85] as the neighborhood princi-

ple. Therefore, if a molecule is known to have certain therapeutic effects, a good

place to start the search for other molecules with the same effect would be by find-

ing molecules that are structurally similar to the original. This idea of similarity

searching in databases of molecules was introduced by Carhart et al [25] and Willet
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et al [120].

The search can proceed in one of two ways depending on what information is

available beforehand. As described previously, if a whole molecule is known that

produces the desired effect, then a database can be searched for similar molecules.

This approach is known as full structure search. Although graph matching al-

gorithms could be used to establish a set of correspondences between the two

molecules, in practice this is rarely required and approximate methods suffice.

On the other hand, if the mechanism of action is known, i.e. the fragment from

the molecule that gives rise to the effect, then a substructure search (Chapter 5

[69]) can be performed to find molecules which also contain that specific fragment.

This type of search often consists of two phases. The first phase, known as virtual

screening, uses a fast substructure search method usually based on fingerprints to

rapidly eliminate molecules that do not contain the required substructure. However,

due to the non-uniqueness of fingerprints, the method might return false positives.

Therefore, a full subgraph isomorphism algorithm is used to check the remaining

molecules for the substructure.

In both cases fingerprints are often the molecular descriptor of choice. The

reason behind this is the idea that more similar molecules will have more individual

substructures in common. Since fingerprints are naturally represented as bit vectors,

the comparison of two is very fast using a measure like the Tanimoto coefficient.

This distance measure was used by Willet et al [120] to rank the results that are

returned from a chemical database searching system. Various other measures have

been devised for assessing fingerprint similarity and these are discussed by Willet et

al [119]. More recently, Salim et al [94] have shown how data fusion techniques can

be used to combine a number of different similarity measures. However, they also

point out that no combination can consistently outperform the Tanimoto coefficient.

2.2.3 Generation of Chemical Structure

The term chemical space[83, 71] has gained popularity over the past few years as a

way of describing all possible chemical structures. Although chemical space is vast,

there are specific regions of it that are desirable to explore in depth; one of these

regions is the space of druglike molecules. It is currently unfeasible to enumerate

such regions, however, approximately enumerating subsets of this region is possible
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and indeed useful for discovering new drug leads.

Programs designed to generate chemical structure fall under three broad cate-

gories. The first, termed CASE (computer assisted structure elucidation) [82], con-

sider the problem of finding a valid 3D conformation of a molecule given some

experimental data. The second, known as de novo methods[97] attempt to generate

active ligands given information about the structure of the target protein’s active site.

While the third, library design methods, produce a set of molecules that attempt to

cover the diversity present in a small area of chemical space.

The structure elucidation of an unknown molecule is a long standing problem

in chemistry. Typically some data is available describing the 3D structure of the

molecule. An example of this type of experiment from the field of molecular spec-

troscopy is Carbon-13 NMR.

Early attempts to solve it by Carhart et al [23] resulted in a program CONGEN

being produced and later GEONA [24]. Both these programs are capable of enu-

merating the possible structures of a molecule given its molecular formula by as-

sembling fragments or atoms. However, rather than a systematic exploration of the

required region of chemical space, they use a more heuristic method. A more sys-

tematic exploration of chemical space is given by Funatsu et al [45] in their structure

elucidation program CHEMICS. CHEMICS uses data from molecule spectrums to

construct an initial set of fragments, this set is reduced using the molecular formula

and user entered constraints. CHEMICS can also avoid the possibility of generat-

ing overlapping fragments. Contreras et al [30] use a tree notation of molecules to

define a base tree which is a representative of the space of molecules that are to be

explored. They then explore the structure present by performing a depth first search.

Christie and Munk [26] describe a system (COCOA) that uses the reverse of

structure generation; structure reduction. Commencing from a hyperstructure repre-

sentation of a molecule, bonds are successively removed according to data collected

from spectral experiments.

Meiler and Will [80] describe a genetic algorithm for structure elucidation from

a molecular formula and C13 NMR data. Each chromosome represents a possi-

ble structure for the molecule and the initial generation is constructed by randomly

selecting possible structures from the molecular formula. The fitness of a chromo-

some is assessed by checking its compatibility with the NMR data. The population
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of chromosomes is then evolved using the standard methods of genetic search algo-

rithms.

Porquet et al [87] describe a method of randomly generating 3D molecular struc-

ture by combining fragments from a fragment database defined by the user. The

authors use a “self-generation algorithm” that builds the 3D structure step by step

by attaching fragments to the growing molecule. The attachments are done accord-

ing to covalent binding where fragments are attached to unused valencies in the

growing molecule. The authors establish strong mathematical links between the

fragment database and the set of generated structures. The role of the approach is to

understand the size, shape and mass characteristics of the generated structures. This

piece of work sits on the boarder line between CASE methods and library design.

De novo methods for ligand design have been in development for more than 15

years and have their roots in computer assisted chemical elucidation systems. Given

the structure of an active site in a protein, the goal is to build chemically viable

molecules that are successful at interacting with that protein. Initially, methods

only implemented structural constrains but have since been extended to consider

the synthesis route and druglikeness of the generated molecules.

Early approaches built the ligands inside the active site starting from seed atoms.

By joining either atoms (GenStar[92]) or fragments (GroupBuild[93]) to the seeds a

complete ligand could be produced that was complementary to the shape of the ac-

tive site. LigBuilder[112] used a similar approach but the process was controlled by

a genetic algorithm. GROW[81] uses an incremental approach but avoids some of

the complications of fragment assembly by only joining amino acids. BUILDER[91]

searches a database of structures which are then superimposed in the active site.

Ligands are found by tracing paths through the superpositions. SPROUT[47] uses

a two step approach, first a skeleton is built in the active site and then atoms are

substituted into the skeleton to produce a ligand.

While all the above approaches construct the ligands with 3D constraints in

place, 2D systems have also been proposed that make use of conversion algo-

rithms to produce low energy 3D conformations from 2D descriptions during the

process. In DBMAKER[52] and BOOMSLANG[31] generated molecules are de-

scribed using SMILES strings and then converted into 3D structures using CON-

CORD. MOLMAKER[28] uses a graph theoretic approach to enumerate all graphs
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with certain sets of vertex degrees. These graphs are then attributed with atom and

edge labels and thus transformed into molecules.

More recently, attention has been paid to the requirement that de novo meth-

ods should produce ligands that have a realistic synthesis route. For example,

DREAM++[77] produces new ligands through user specified chemical reactions

which are then checked for compatibility with the active site. TOPAS[98] uses a

large fragment library derived from current drugs and a restricted set of reactions to

produce new structures. A template structure is presented to the system from which

a number of new molecules are produced. An evolutionary algorithm is employed

such that the best molecule from the current generation becomes the new template

structure for the next generation. SYNOPSIS[110] also employs a cyclic generation

procedure where new molecules are added to a pool that is used to construct later

molecules.

The third requirement of druglikeness is generally only assessed in de novo

methods through a simple filtering step based on a rule of thumb (e.g. Lipinski’s

“Rule of Five”[72]). However, a recent approach by Kutchukian et al[66] allows

molecules with realistic synthesis routes to be assembled according to the class of

molecules the system is trained on, such as drugs or natural products.

Targeted library design is the task of producing a set of molecules that cover the

diversity present in an area of chemical space. Ideally, the library should express

all the points of chemical variation present in the required area of chemical space in

the minimum number of molecules possible. This is due to the costs of library syn-

thesis. When little information is known about the target, a very diverse library of

molecules is designed and conversely, when much structural information is known

then a focused library of molecules is used. In both cases the representative power

of the library is of key importance, in other words, the amount of chemical space

covered by the molecules. This can be determined by diversity analysis[118].

Targeted libraries are usually produced by a molecule selection approach, for

example performing a substructure search on a large set of molecules. However,

methods that generate new chemical structures are also used. Leach et al [68] de-

scribe such a method of library enumeration using a reaction transform method. A

reaction transform method works by reacting a set of user defined fragments accord-

ing to a set of user defined rules to produce new chemical structures. The Daylight
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reaction toolkit[2] is used to perform the reactions.

The authors also suggest a fragment marking approach to generating chemical

structures. This works by segmenting the input molecules into core structures with

additional groups attached (much like how Markush structures are described). New

molecules can then be generated by specifying rules as to which fragments may be

attached to which connection point on a core structure. While this is significantly

faster than the reaction-transform approach, problems can arise where the structures

must be corrected by hand.

2.2.4 Docking and Scoring

Docking [96] is the study of protein-ligand interactions using computational meth-

ods. Given an active site of a protein and a small molecule (a ligand), docking can

explain how well the ligand binds to the active site. This is performed by exploring

the conformational space of the ligand (and in some cases the protein) to find the

optimal pose of a ligand in an active site. The success of the docking is computed

by finding the energy of the binding and in turn this is related to the user using a

scoring function.

Virtual high-throughput screening [76] (vHTS) is perhaps the most common use

of docking methods. Traditional high-throughput screening [53] involves testing a

large number of molecules against a specific target in the hope of finding a molecule

that is active. In contrast, Virtual HTS uses computational models to find active

molecules by testing a large number of molecules in silico. This screening can be

quite simple, for example using fingerprint based screening methods described ear-

lier, or more complex by using 3D molecule descriptions or performing a docking

simulation. In all cases, the goal is to reduce the number of molecules that must be

tested in vitro. For example, the molecule libraries produced using methods from

the previous section might be subjected to vHTS before undergoing synthesis and

subsequent tests in a laboratory.

A second application of docking methods is to predict the binding pose of a

known active ligand. This provides insight to the specific mechanism that results in

a ligand being active. The result of these two applications is that docking is used in

some capacity by nearly all pharmaceutical companies.

The state of the art of docking technology as discussed by Leach et al [70]
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shows that while the effectiveness of docking has increased considerably in the

last 20 years, there are still significant improvements required before computational

models will accurately reflect the true biochemistry taking place. The result of this,

as discussed in detail by Kontoyianni et al [61], is that certain docking programs

and scoring functions work well for specific targets. As of yet there is no universal

way of predicting binding poses of ligands and the energy associated with the poses.

Nevertheless, many different programs to perform docking have been developed

and evaluated. Rarey et al [88] describe an algorithm called FlexX that incremen-

tally builds up the ligand using a greedy strategy to find the optimal pose. Kuntz

et al [65] have designed an algorithm (DOCK) that uses shape-based approaches

to compute the optimal pose. The approach has been extensively supported and is

now in its 6th release. By combining Monte Carlo simulation with a shape compar-

ison filter, Venkatachalam et al [108] have designed LigandFit to perform docking.

Openeye chemical software have designed a program called Fred [3] that provides

exhaustive searching of possible ligand poses.

These approaches explore the conformational space of the ligand but not the

protein. As discovered by Koshland [62] in 1958, the simple lock and key idea of

ligand-protein interaction where only the ligand undergoes conformational changes

does not completely explain the situation. Instead, Koshland suggested the induced

fit model that allows the active site to undergo structural changes as well. This is

modeled in part by the GOLD docking program by Jones et al [60] that explores

partial flexibility of the protein. A genetic algorithm is employed to search the

space of possible protein-ligand poses.

The chosen scoring function is of great importance if the true value of a ligand

binding pose is to be accurately described to the user. Bissantz et al [16] analyze

seven different scoring functions over three different programs (Dock, FlexX and

Gold). They report that using consensus scoring functions (combinations of single

score functions) significantly improves the quality of scoring. McGaughey et al

[79] compare a variety of screening methods using both 2D and 3D descriptions of

ligands and a variety of docking methods. Interestingly they show that the 2D ligand

descriptions can sometimes give a better indication of activity than more complex

3D descriptions and docking methods. However, it is generally agreed in the field

that comparative studies of these kinds are very difficult due to bias arising in the
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data set chosen.



Chapter3
Mixing Spectral Representations of

Graphs

3.1 Introduction

In this chapter we propose a method of computing the median graph of a set through

averaging spectral matrices. The median graph (section 2.1.5) has attracted much

attention recently as a method of constructing a representative for a set. Jiang et al

[58] were the first to formalize the idea of median graphs and gave two definitions

for median graphs. Both definitions state that the median graph should be the graph

with the minimum sum of distances (SOD) to all graphs in the set, however they

differ in the space from which the median graph may be drawn. The set median

must be one of the graphs in the set while the generalized median can be any graph.

The distances used to calculate the SOD for the median graph are usually expressed

as graph edit distances (section 2.1.2) but different distance measures may be used.

The computational complexity of finding the generalized median is significantly

higher than that of the set median. Accordingly, the generalized median gives a

more accurate description of the graph set. Therefore, much work has gone into

trying to find approximate solutions to the generalized median problem. For ex-

ample, Bunke et al [21] describe a genetic algorithm to compute the generalized

median graph. Following a series of theoretical results [39, 40] that place bounds

on the median graph, a new genetic algorithm [41] has been proposed that can prune

much more of the search space.

36
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Using the dissimilarity graph embedding method of Riesen et al [90], another

two methods for generalized graph computation have been developed. In the first,

Ferrer et al [42] describe a method of searching for the generalized median graph in

a reduced space. While in the second, Ferrer et al [43] use a triangulation procedure

in the embedding space to construct an approximation of the generalized median.

The idea of applying spectral methods to the computation of median graphs has

been used before. Ferrer et al [37] extended the definitions of the generalized me-

dian and set median to the spectral domain and gave an algorithm to compute the

spectral median graph. The algorithm proceeds by using graphs from the set to

perform incremental updates to the spectral median graph. However, due to the in-

cremental nature of the algorithm the graph order used determines the final spectral

median graph. Therefore, using this algorithm, it is possible to construct different

spectral median graphs for the same set. See section 2.1.5 of the literature review

for a full discussion of this approach.

In our approach we propose the direct averaging or mixing of the spectral matri-

ces produced from graphs in the set. Since it is known that the different eigenmodes

correspond to different levels of structure present in the graph, we hope that by

mixing the spectral matrices we will be able to combine different structures from

graphs. For example, it should be possible to combine the local structure of one

graph with the global structure of another. If this is successful not only will we be

able to generate new graphs in a rudimentary way but we will also show that this

type of representation could be suitable for forming a generative model.

However, a spectral representation describing a mixed or averaged graph does

not directly give us the graph it describes. This is because it is very unlikely that the

mixed spectral matrices will display the properties we require from them (such as

orthogonal eigenvectors). Therefore, we must define a reconstruction step that con-

ditions these matrices and in effect projects our current description of the averaged

graph onto the nearest correct graph.

The outline of the chapter is as follows; In section 3.2 we describe various matrix

representations of graphs, which are key to the reconstruction process. In section

3.3.1, we describe how we align the spectral representations and mix them together.

In section 3.3.2, the reconstruction process is detailed. In section 3.4 we provide

some experimental analysis. Finally, in section 3.5 we draw our conclusions. A
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table of the symbols used in this chapter is given in section 3.6 on page 61.

3.2 Graph Representation

A graph is a relational structure that consists of vertices (the objects being consid-

ered) and edges (the relations between the objects). For example, the World Wide

Web is a large relational graph where the pages are vertices and the hyperlinks are

edges. Since a relational structure is very general and expressive, graphs are used

for storing and representing data in many different applications. The converse of

this is that they are difficult to represent in a canonical form, generally an order-

ing over the vertices must be established or some form of vertex order invariant

representation must be computed.

Formally, a graph G is defined to be a tuple (V , E , wV , wE) which has vertex set

V = {v1, v2, ..., vn}, edge set E = {e1, e2, ..., em} ⊂ V × V , weight function on the

vertices wV : V → [0, 1] and weight function on the edges wE : E → (0, 1]. There

are varying degrees of complexity that a graph can exhibit.

• Simple Graph: The most basic type is a graph with no weights on the ver-

tices or on the edges, no direction associated with an edge and no edges that

connect a vertex to itself. An edge is either present or not present. For this

reason wV maps all vertices to 0 and the weight function wE maps any edges

that exist to a value of 1. Furthermore, we represent the non-directed property

by ensuring that if (vi, vj) ∈ E then (vj, vi) ∈ E is also true. Edges beginning

and ending at the same vertex are forbidden by ensuring that (vi, vi) /∈ E .

• Weighted Graph: A weighted graph retains the non-directed and no self re-

lating vertices properties from the previous type. However, the weight func-

tions wV and wE are now free to take values in the range [0, 1] and (0, 1]

respectively.

• Weighted Directed Graph: A weighted directed graph captures direction on

the relationships between objects and thus (vi, vj) may appear in E without

(vj, vi) appearing. The restriction that (vi, vi) /∈ E remains.

There are of course other types of graphs possible like a general graph (with no

restrictions), a weighted graph that only makes use of one of the weight functions or
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Figure 3.1: Two example graphs: (a) depicts a simple graph while (b) depicts a
weighted graph with edge weights drawn on the graph and vertex weights shown to
the right.

a non-weighted directed graph. However, we will only concern ourselves with the

first two types, that is simple graphs and weighted graphs. An example of a simple

graph and a weighted graph is given in figure 3.1 (a) and (b) respectively.

We will now proceed to describe various representation methods for graphs.

These representations are exact in the sense that the graph can always be totally

recovered, there is no loss of information.

A matrix representation of the graph is a |V| by |V| matrix X, such that an

element Xij of this matrix represents some property of the pair of vertices i and

j. Diagonal elements Xii encode information about vertex i only. Since the order

of vertices in the graph does not matter, if we permute the indices associated with

the graph vertices then the graph remains the same. If P is the permutation matrix

which re-orders the vertices, then

X′ = PXPT (3.1)

represents the same graph as X. As a result, there are many matrix representa-

tions of the same graph.

3.2.1 Adjacency Matrix

The most basic matrix representation is the adjacency matrix. The diagonal holds

the weight of the vertices and the off-diagonal’s hold the weights of the edges. The

formal definition of the adjacency matrix A is:
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A(u, v) =


wV(u) if u = v

wE(u, v) if u 6= v and (u, v) ∈ E

0 otherwise

(3.2)

Clearly if the graph is undirected, the matrix A is symmetric. As a consequence,

the eigenvalues of A are real. These eigenvalues may be positive, negative or zero

and the sum of the eigenvalues is zero.

3.2.2 Laplacian Matrix

In some applications, it is useful to have a positive semidefinite matrix representa-

tion of the graph. This may be achieved by using the Laplacian matrix. We first

construct the diagonal degree matrix D, whose diagonal elements are given by the

vertex degrees dv. The vertex degree is the sum of the edges incident to that vertex,

dv = Σ
|V|
i=1Avi.

D(i, j) =

di if i = j

0 otherwise
(3.3)

The Laplacian matrix L is computed by subtracting the adjacency matrix from

the degree matrix:

L = D−A (3.4)

There are two more types of Laplacian matrices each with slightly different

properties: the signless Laplacian and the normalized Laplacian.

In the signless Laplacian |L| the degree and adjacency matrices are simply added

instead of subtracted.

|L| = D + A (3.5)

The normalized Laplacian N has its diagonals and off diagonals scaled. Briefly,

the result of this is that the eigenvalues are now bounded in the interval [0, 2], which

can be useful for some algorithms and theoretical results (Chapter 1, p12 [27]).
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N = I−D−
1
2 AD−

1
2 (3.6)

3.2.3 Spectral Matrices

The eigendecomposition of a matrix can be applied to one of the matrix representa-

tions listed above to produce a spectral representation. This has produced the field

of spectral graph theory[27] which has lead to many different applications and ap-

proaches. If X is a matrix representation of a graph then the spectral decomposition

X = VEVT results in a set of eigenvalues E and eigenvectors V.

There are advantages to using a spectral representation of a graph. The first

is that it provides a degree of protection against the arbitrary vertex order that a

graph may display. By ordering the eigenvalues by magnitude they are invariant to

vertex order. However, only the columns of the eigenvector matrix may be made

invariant to vertex order by arranging them according to eigenvalue magnitude. To

put this formally, from a matrix representation X we have a matrix of eigenvalues

E = diag(e1, e2, ..., en). Associated with an eigenvalue ei we have an eigenvector

vi and the matrix of eigenvectors is formed as V = (v1|v2|...|vn). If we ensure that

the eigenvalue magnitudes are ordered so that e1 ≤ e2 ≤ ... ≤ en then the spectral

decomposition of any permutation of the matrix X, PXPT , will result in the same

set of ordered eigenvalues and ordered columns of eigenvectors. The individual

components of the eigenvector columns will however vary due to the permutation.

Another advantage of using a spectral decomposition to represent a graph is

that the structural properties of the graph are more apparent than in the original

matrix representation. For example, as we described in section 2.1.4 on graph seg-

mentation, the second eigenvector of the Laplacian matrix can be used to logically

segment a graph. Furthermore, if the original representation is a Laplacian matrix

then the number of eigenvalues with zero magnitude relate to the number of discon-

nected elements present in a graph.

Sometimes it is preferable to use a single matrix to describe a graph rather than

a separate one for the eigenvalues and eigenvectors. This can be accomplished by

combining the eigenvalues and eigenvectors in the following way:

K = V
√

E = (
√
e1v1|

√
e2v2|...|

√
envn) (3.7)
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the original matrix representation can be recovered by:

X = KKT (3.8)

The eigendecomposition can be performed by the QR algorithm [49] in O(n3)

time.

3.2.4 Heat Kernel

The heat kernel, describes a graph by the way heat would spread through it, similar

to the way heat would spread through a real world structure. The heat kernel is

described in terms of the spectral decomposition of the Laplacian:

H = V exp [−tE]VT (3.9)

The time parameter t can be used to obtain a representation that either favours

local connectivity or global connectivity in the graph. If t is small the local connec-

tivity of the graph is represented in the heat kernel and if t is large then the global

connectivity of the graph is represented instead.

3.3 Method

The spectral representation is an interesting one in terms of mixing graphs for a

number of reasons. As mentioned earlier, part of the correspondence problem is

solved in the spectral representation; the columns of V are ordered by the associated

eigenvalue magnitudes which are not affected by the vertex labeling. Secondly, in

the Laplacian and related matrices, structures of different scales in the graph are

associated with different eigenmodes. As a result, it is possible to mix different

scales separately using the spectral representation.

3.3.1 Spectral Alignment and Mixing

We begin from a set of graphs S and compute a matrix representation Xk for each

graph Sk ∈ S . We take the eigendecomposition of each matrix representation

Xk = EkVkE
T
k to produce a set of eigenvalues Ek and eigenvectors Vk describing
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the graph. The eigenvalues and associated eigenvectors are ordered by magnitude.

If the graphs in the set contain different numbers of vertices then we pad the repre-

sentations to accommodate the largest graph.

Before mixing the spectral representations of two or more graphs, we must first

align the rows of each Vk so that they are in the same order. This may be done

using a spectral graph matching algorithm such as Umeyama’s method [106] or a

variant such as that of Ferrer et al [37]. In order for the process of mixing spectral

modes to be effective, the eigensystems of the graphs must be relatively similar.

These spectral methods of alignment should be effective on such graphs. In cases

where we are testing the limits of the approach, i.e. when the graph spectrums

differ significantly within the set, we use the graph matching algorithm of Gold and

Rangarajan [48] to overcome this limitation.

It is well known that the eigenvectors of the decomposition of a matrix are sign-

ambiguous. In other words, the eigenvectors are recovered up to a sign factor of

±1. It is necessary to determine these factors if we are to correctly mix the corre-

sponding eigenmodes. Our method is based on identifying the largest component

of an eigenvector and correcting the sign based on that coordinate. Given a set of

spectral matrices {V1,V2, ...,V|S|}, let vij be the jth eigenvector (mode) from Vi.

The kth component of this eigenvector can then be denoted vijk. We find the largest

magnitude component for mode j from

lj = arg max
k

∑
i

|vijk| (3.10)

We then correct the sign of the eigenvectors by ensuring that component lj is

positive for mode j in all the spectral matrices. In other words, we correct the eigen-

vectors based on the component that will cause the largest error if left unaligned.

We denote the aligned sign-corrected eigenvectors of a graph Sk as V̊k.

Once aligned, the spectral matrices of two graphs Si and Sj may be merged by

simply taking the average of the matrices, i.e.

Vm =
1

2
(V̊i + V̊j) (3.11)

Em =
1

2
(Ei + Ej) (3.12)
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Figure 3.2: Sample graphs and the spectral average graph. Dotted edges have
weights of close to 1

2
.

which will give a combination of two graphs. Figure 3.2 demonstrates an ex-

ample of this mixing process. Figure 3.2 shows the original graphs and the result of

reconstruction from the mixed spectral representation using the method detailed in

the next section.

The spectral representation is a particularly flexible one for mixing graphs since

there is a separation of different scales of the graph in the ordering of the eigenval-

ues. It is therefore possible to mix graphs by selecting different parts of the spectrum

from each of the graphs being mixed. This enables the selection of different parts of

the structure from the different graphs. In order to achieve this, we define a mixing

matrix thus:

Mk =


fk,1 0 ... 0

0 fk,2 ... 0
... . . . ...

0 0 ... fk,n

 ,

|S|∑
k=1

Mk = I (3.13)

The diagonal elements fkj define the fraction of mode j which is selected from

the spectrum of graph k. The mixed spectral matrices are then defined as:

Vm =

|S|∑
k=1

V̊kMk (3.14)

Em =

|S|∑
k=1

EkMk (3.15)
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Figure 3.3: Mixing spectral modes in different proportions from two graphs

Figure 3.3 shows the results of mixing the two example graphs from Figure 3.2

in different proportions. On the left, the modal proportions are [1, 0.5, 0, 0, 0, 0, 0, 0]

and [0, 0.5, 1, 1, 1, 1, 1, 1] from the first and second graphs respectively. On the right,

the proportions are reversed, i.e. [0, 0.5, 1, 1, 1, 1, 1, 1] and [1, 0.5, 0, 0, 0, 0, 0, 0]. By

selecting the proportions we are able to mix key structures from each of the two

graphs.

3.3.2 Reconstruction

With the merged spectral representations to hand, we can reconstruct a graph using

the reverse of the eigendecomposition:

Xm = VmEmVT
m (3.16)

In general, the averaging process will lead to a matrix Xm which does not have

the required properties. Firstly, the mixed spectral matrix Vm will not be orthonor-

mal. In order to correct this we apply an orthogonalization procedure and a normal-

izing step to Vm to obtain an orthonormal spectral matrix V′m:

V′m = (VmVT
m)−

1
2 Vm (3.17)

Secondly, the reconstructed matrix representation may not be consistent with

the chosen representation. For example, if we are operating with Laplacians, the

diagonal elements will not be the vertex degrees. In addition, the edges will be

weighted and unless we are using weighted graphs this must be corrected. There is

therefore a need to project Xm onto the nearest graph.
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It is tempting to interpret the weights as edge probabilities. In fact we could se-

lect edges in the final conditioned Laplacian with a probability equal to their weights

in Xm. This approach would generate sets of random graphs which are close to the

original graph. On the other hand, this ignores the co-occurrence of edges in the

original graphs. A simple and satisfactory solution is to use a threshold for edges

and non-edges. We define a function θ that operates on a matrix and thresholds the

elements based on their magnitude:

θ : A′ij →

 0 |Aij| < β

1 |Aij| ≥ β
(3.18)

If an element is greater than an adjustable parameter β then we record an edge,

otherwise no edge is recorded. Although this function is only applicable to adja-

cency matrices, it can be extended to recover different matrix representations.

The final mixed matrix representation X′m can be recovered as follows, where

the correct thresholding function is selected for the matrix representation used.

X′m = θ(Xm) (3.19)

3.3.3 Spectral Median Graph

We now have all the ingredients we require to give our formal definition of the spec-

tral median graph GS . Note that this differs from the definition given by Ferrer et

al [37] (see section 2.1.5). Using the aligned sign-corrected spectral decomposition

of each graph in the sample set we compute the following matrices:

VS =
1

|S|

|S|∑
k=1

V̊k (3.20)

ES =
1

|S|

|S|∑
k=1

E̊k (3.21)

We then apply the reconstruction procedure described above, that is, a) orthog-

onalize the matrix VS , b) use the reverse of the spectral decomposition to find the

graph matrix representation and c) apply the threshold function to the recovered

matrix. This yields the spectral median graph GS .
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3.4 Experimental Results

In this section we work with the normalized Laplacian matrix representation of

a graph. In the first set of experiments, we take a graph set and determine the

spectral median graph GS by the method described above. In order to visualize

the results, we produce MDS plots based on the edit distances between the graphs.

For comparison purposes, we have found the generalized median graph as given by

Jiang et al[58], which is defined by:

GM = argmin
S∈U

|S|∑
i=1

e(S, Si) (3.22)

where e(., .) is the edit distance and U is the set of all graphs. We can also use

the sum of distances to all graphs S ∈ S in the set as a measure of the quality of a

median graph. It is defined as:

SOD(G,S) =

|S|∑
k=1

e(G,Sk) (3.23)

As discussed in section 2.1.5 finding the generalized median graph is a com-

putationally complex problem. Therefore, we limit our data sets to graphs with 7

vertices in cases where we must calculate the generalized median graph.

In Figure 3.4 we give results for a set of 10 graphs each with 6 vertices. The

10 graphs are generated by computing a seed graph and then perturbing the edges

with a specific probability. This ranges from 5% of edges being perturbed in the

first plot to 30% in the fourth plot. For each plot the following information is given:

a) the sum of distances between the graphs in S and the generalized median GM :

SOD(GM ,S), b) the sum of distances between the graphs in S and the spectral

median GS: SOD(GS,S) and c) the edit distance between the generalized median

and the spectral median: e(GM , GS).

When only 5% or 10% of the edges are perturbed the spectral median graph we

calculate is equal to the generalized median. However, as the noise level increases

(20% and 30% of edges perturbed) the distance between GM and GS increases.

In all the plots the generalized median (black square marker) is relatively near the

center. On the other hand, the spectral median (red diamond marker) at high noise

levels is usually found nearer the edge. As the noise level increases, the spectral rep-
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Edges perturbed: 5%
SOD(GM ,S): 6
SOD(GS,S): 6
e(GM , GS): 0

Edges perturbed: 10%
SOD(GM ,S): 10
SOD(GS,S): 10
e(GM , GS): 0

Edges perturbed: 20%
SOD(GM ,S): 32
SOD(GS,S): 42
e(GM , GS): 2

Edges perturbed: 30%
SOD(GM ,S): 39
SOD(GS,S): 55
e(GM , GS): 5

Figure 3.4: Spectral median graph results plotted using MDS. The set S consists of
10 graphs each with 6 vertices. Markers are as follows: blue plus signs - graphs from
the set S, red diamond - spectral median graph GS and black square - generalized
median graph GM .
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resentation of each sample graph describes increasingly different structural patterns.

This results in errors in our approach of calculating the spectral median through a

direct average.

We perform the same experiment with a set of 20 graphs and the results of this

are given in Figure 3.5. The noticeable aspect of this is that the increased number

of graphs used to compute the averages do not seem to have a negative effect on

the quality of the spectral median. Although it is important to remember we are

working with small graphs here due to computational constraints.

In Figures 3.6 (|S| = 10) and 3.7 (|S| = 20) we describe the results when the

graphs in the set are composed of 7 vertices. Again, we see broadly the same results

as those described above across the different levels of corruption.

Finally, in Figure 3.8 we describe results for a set of 20 graphs where half of

the set is produced from one seed graph and the other half is produced from a

different seed graph. This experiment is designed to test the limits of the approach,

i.e. when the graphs in the set do not represent similar strictures. We do not expect

the approach to be effective here since the spectral representation of each graph in

the sample set will no longer describe similar structures. This has been observed in

other spectral approaches. Umeyama[106] commented that the effectiveness of his

approach is inherently limited by the structural similarity of the two graphs that are

being matched.

We see the expected results here. In all the previous tests the spectral graph was

equal to the generalized median graph at noise levels of 5% and 10%. However, here

there is a difference between the structure of the spectral median and the generalized

median at a noise level of 10%. Furthermore, the edit distance e(GM , GS) is quite

large considering that the graphs only have 6 vertices.

One of the key benefits of mixing graphs in spectral representations is the ability

of the representation to separate different structural parts of the graph. In order

to examine the effectiveness of this approach, we have constructed the following

experiment. In this experiment we generate two graph classes. Both classes are

generated by joining two seed structures by a common set of vertices. Let the seed

graphs be C1, C2 and C3. Then set one is constructed by joining C1 and C2, and

set two by joining C1 and C3. The edges of the joined graphs are then perturbed to

provide some structural variation within each set. We construct 10 graphs for each
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Edges perturbed: 5%
SOD(GM ,S): 12
SOD(GS,S): 12
e(GM , GS): 0

Edges perturbed: 10%
SOD(GM ,S): 27
SOD(GS,S): 27
e(GM , GS): 0

Edges perturbed: 20%
SOD(GM ,S): 58
SOD(GS,S): 68
e(GM , GS): 1

Edges perturbed: 30%
SOD(GM ,S): 82
SOD(GS,S): 96
e(GM , GS): 2

Figure 3.5: Spectral median graph results plotted using MDS. The set S consists of
20 graphs each with 6 vertices. Markers are the same as the previous plot.
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Edges perturbed: 5%
SOD(GM ,S): 13
SOD(GS,S): 13
e(GM , GS): 0

Edges perturbed: 10%
SOD(GM ,S): 21
SOD(GS,S): 21
e(GM , GS): 0

Edges perturbed: 20%
SOD(GM ,S): 37
SOD(GS,S): 41
e(GM , GS): 1

Edges perturbed: 30%
SOD(GM ,S): 63
SOD(GS,S): 79
e(GM , GS): 7

Figure 3.6: Spectral median graph results plotted using MDS. The set S consists of
10 graphs each with 7 vertices. Markers are the same as the previous plots.
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Edges perturbed: 5%
SOD(GM ,S): 20
SOD(GS,S): 20
e(GM , GS): 0

Edges perturbed: 10%
SOD(GM ,S): 38
SOD(GS,S): 38
e(GM , GS): 0

Edges perturbed: 20%
SOD(GM ,S): 63
SOD(GS,S): 63
e(GM , GS): 0

Edges perturbed: 30%
SOD(GM ,S): 137
SOD(GS,S): 169
e(GM , GS): 7

Figure 3.7: Spectral median graph results plotted using MDS. The set S consists of
20 graphs each with 7 vertices. Markers are the same as the previous plots.
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Edges perturbed: 5%
SOD(GM ,S): 74
SOD(GS,S): 74
e(GM , GS): 0

Edges perturbed: 10%
SOD(GM ,S): 80
SOD(GS,S): 86
e(GM , GS): 3

Edges perturbed: 20%
SOD(GM ,S): 96
SOD(GS,S): 108
e(GM , GS): 3

Edges perturbed: 30%
SOD(GM ,S): 97
SOD(GS,S): 117
e(GM , GS): 5

Figure 3.8: Spectral median graph results plotted using MDS. The set S consists
of 20 graphs in total where 10 are constructed by perturbing one seed graph and
the other 10 are constructed by perturbing a second seed graph. All graphs have 6
vertices.
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Figure 3.9: Mixing the spectral modes of two graph sets. Set one is shown us-
ing blue markers and set two is shown using magenta. Plus signs denote sample
graphs (the color determines the set), a circle denotes the spectral median graph
for a specific set, the red diamond indicates the spectral median graph for both sets
combined and black crosses denote graphs constructed using the mixing approach.
Two results are shown for the same experimental parameters: graph size is 10, edge
edit rate is 10% and the size of each sample set is 10.

set which gives a total of 20 sample graphs.

We construct a mixed graph by mixing the spectral representation of one graph

from each class. To do this we use two mixing matrices M1 and M2. The modal

proportions chosen for the mixed graph are randomly generated with the follow-

ing restrictions: 1) each weight may be drawn from {0, 1} and 2) mixing weights

must always decrease or increase along the main diagonal. Combined with the

requirement that the mixing matrices must sum to I, M1 = diag([1, 1, 0, 0]) and

M2 = diag([0, 0, 1, 1]) are an acceptable pair but M1 = diag([1, 0, 1, 0]) and

M2 = diag([0, 1, 0, 1]) are not. We impose this restriction since, in most cases,

it does not make sense to interleave different levels of structure.

We visualize the results of these experiments by using MDS to embed the sam-

ple and generated graphs. We also compute the spectral median of each set sepa-

rately and the spectral median of both sets combined. In Figure 3.9 we show two

results using graphs of size 10 (the size of each seed graph is 5). It is clear that the

mixed graphs span the space well both around and in-between the two sample sets.

Furthermore, the three computed spectral medians all lie in the expected positions.

In Figure 3.10 we show results for a sample set containing graphs of 16 vertices
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Figure 3.10: Mixing the spectral modes of two graph sets. Markers are as on the
previous plot. Two results are shown for the same experimental parameters: graph
size is 16, edge edit rate is 10% and the size of each sample set is 10.

Figure 3.11: Mixing the spectral modes of two graph sets. Markers are as on the
previous plot. Two results are shown for the same experimental parameters: graph
size is 24, edge edit rate is 10% and the size of each sample set is 10.
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(each seed graph is now of size 8). Again we construct mixed graphs that span the

space well, but not as effectively as before indicating that the difference in structure

present in the two sample sets is beginning to cause problems. This result is rein-

forced when we examine the results for graphs of size 24 (Figure 3.11). In these

plots it is clear that we are no longer successfully generating structures that span the

space or lie around the sample sets. Clearly the structural variations between the

two sets are too large for our method to be effective. Note however that the spectral

medians all still seems to appear in the appropriate positions.

Given the results of this last experiment we evaluated how effective the approach

was as the graphs become significantly larger. We draw examples from a single seed

graph here to reduce the structural variations present. The results of this experiment

are shown in Figure 3.12. For graph sizes of 20 and 30 vertices ((a) and (b) in

Figure 3.12) the mixing approach still seems successful. However, when the graph

size is increased to 40 (Figure 3.12(c)) it is clear that mixed graph are no longer

being generated that are near to those of the sample set.

This does not necessarily mean that the approach cannot handle graphs this

large, instead it suggests that there is a vast number of different structural patterns

that may be generated using this data set. To ensure the method only generates

structures that are similar to those of the input we must turn to the generative models

described later in this thesis. These approaches actually go a step further from

generating just similar structures, they produce structures that are drawn from the

distribution of structural variation described by the sample set.

We make use of one more experiment to assess the performance of our ap-

proach. In this case we are interested in the ability to mix structure and construct

useful spectral medians when the sample set contains graphs of greatly differing

sizes. To investigate this we use the approach of joining core graphs from the ear-

lier experiment. In this case, one set is produced from core graph C1 and the second

set is produced from C1 joined with C2. This ensures that we are not trying to mix

graphs describing totally different structure.

In Figure 3.13(a) we give results for |C1| = 10 and |C1| + |C2| = 20. When

the graphs differ considerably in size it seems easier to construct mixed graphs near

each sample set as opposed to in-between the two sets. It is also interesting to note

that the combined spectral median always lies closer to the set consisting of smaller
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(a) (b)

(c)

Figure 3.12: Mixing the spectral modes of one graph set. Markers are as on the
previous plot (although only one set is used here). The graph sizes vary in each plot
as follows: (a) 20, (b) 30, (c) 40. The edge edit rate is 5% and the size of each
sample set is 20.
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Figure 3.13: Mixing the spectral modes of two graph sets containing graphs of
different sizes. On the top row, set one has 10 vertices (blue markers) and set two
has 20 vertices (magenta markers). On the bottom row, set one has 15 vertices (blue
markers) and set two has 30 vertices (magenta markers). The edge edit rate is 10%
and the size of each sample set is 10.
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graphs (blue markers indicate the smaller set). The same is true for the combined

spectral median in Figure 3.13(b). Here |C1| = 15 and |C1 + C2| = 30. However,

when there is a larger difference in graph size, the mixed graphs are only successful

when the modal proportions favour the smaller graph.

3.5 Conclusion

In this chapter we have described a method of mixing graph structure using the

spectral representation. This method can be used to compute the median of a set

containing two or more graphs. Furthermore, by employing the spectral represen-

tation we gain the ability to mix different levels of structure, by combining, for

example, the global structure of one graph with the local structure of another. Of

course, since our approach relies on the spectral representation of each graph in

the set being similar, this method is only appropriate on graphs displaying similar

structure.

For our approach to work we must also solve the correspondence problem be-

tween a set of graphs. The spectral decomposition gives us an ordering over the

eigenvectors but not over the components of each eigenvector. We must make use

of a graph alignment algorithm to complete the alignment. Furthermore, since the

eigenvectors are only computed up to a sign factor±1, we must also perform a sign-

correction step. To do this we align each eigenmode by correcting the component

that would cause the largest error if left uncorrected.

With the aligned spectral representations to hand, we can either proceed to

construct a median graph by averaging the spectral representations or to construct

mixed graphs by combining eigenmodes of sample graphs in different proportions.

In both cases, the reconstruction of a mixed graph from the computed spectral rep-

resentation is not a simple step. We must first form a set of orthogonal eigenvectors

by applying an orthogonalization procedure. To recover a correct matrix represen-

tation of our mixed graph we also apply a thresholding step.

To evaluate the quality of the spectral median graph we used two different ap-

proaches. In the first we compared our spectral median graph to the generalized

median. In these experiments we observed that, at low noise levels, the spectral me-

dian equals the generalized median. However, due to the restrictive computational
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complexity of finding the generalized median graph, these experiments were only

performed on small graphs. To assess the performance when working with larger

graphs we examined MDS embeddings of the sample set and spectral median. This

allowed us to visualize the relative distances between the spectral median and the

other graphs in the set.

To evaluate our second contribution, constructing new graphs by mixing spec-

tral representations, we performed experiments that involved mixing structures from

two graphs. Again these new structures, as well as the sample graphs, were visual-

ized using MDS. To provide challenging data for our algorithm we used data sets

that contained a) similar structures, b) different structures of the same size and c)

structures of different sizes.

Ferrer et al [38] has performed a comparison between the approach detailed in

this chapter and their method of constructing the spectral median graph through

incremental updates [37]. The test domain is that of graphical symbol recognition.

They report that both methods perform similarly except under high levels of noise

in which their method outperforms the one described in this chapter.

3.5.1 Future Work

It would be interesting to extend our experiments on median graph computation

to larger sets consisting of larger graphs. With the new faster algorithms available

for exact generalized median computation [41, 42] we would be able to compare

the spectral median graph that our approach produces with the exact one produced

through search based approaches. This would give a much better indication of the

applicability of this approach on more realistic data.
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3.6 Symbols

S A set of graphs.

Sk A graph drawn from the set S.

GM The generalized median graph of a set S.

GS The spectral median graph of a set S.

G A graph with vertex set V , an edge set E , a weight function on the

vertices wV and a weight function on the edges wE .

X A matrix representation of a graph.

P A permutation matrix.

A An adjacency matrix representation of a graph.

L A Laplacian matrix representation of a graph.

|L| A signless Laplacian matrix representation of a graph.

N A normalized Laplacian matrix representation of a graph.

E,V The set of eigenvectors E and eigenvalues V resulting from the eigen-

decomposition of a matrix representation of a graph. Individual eigen-

values and associated eigenvectors are denoted ei and vi respectively.

V̊ An aligned sign-corrected set of eigenvectors.

lj The component of eigenmode j that has greatest magnitude when

summed over a set of eigenvectors from that mode.

K A single matrix spectral representation of a graph, K = V
√

E.

H The heat kernel matrix representation of a graph.

Em,Vm A set of mixed eigenvalues and eigenvectors.

ES,VS The eigenvalues and (non-orthogonalized) eigenvectors of the spectral

median graph.

V′m A set of mixed orthonormal eigenvectors.

Mk The spectral mixing matrix for sample graph Sk.

θ A thresholding function for a matrix representation. A parameter β

determines the threshold level.

X′m A thresholded matrix representation of a mixed graph.

e(., .) Graph edit distance.



Chapter4
Vectorial Generative Models for Graphs

4.1 Introduction

Generative models are well-known tools for representing patterns which reside in

a vector space. Models such as the multivariate normal distribution are easily de-

fined in a vector space from the statistics of sample patterns. However, defining a

generative model for graph data is more complex, since the sample data does not

originally reside in a vector space and concepts such as mean and variance are not

so easily defined. This arises from the arbitrary ordering that may be placed over

the vertices of a graph.

The approach we will be taking in this chapter is to carry out an alignment step

on the sample graphs which brings them all into a canonical order. The graphs

can then be represented by vectors in the canonical order and distributions can be

defined over the vector space. We are specifically interested in the representations

and the structure of the distributions. We will also insist that the model is fully

generative in the sense that a graph can be reconstructed from its representation,

and so new graphs can be constructed from the distributions.

We present six different models in total each differing in the way the vector

space is constructed. Simple models are based directly on the different matrix rep-

resentations of a graph, the adjacency matrix and the Laplacian matrix. We obtain

models in the spectral domain by performing an eigendecomposition on a simple

matrix representation. In one model we construct a single distribution over a com-

bined spectral matrix and in the other we construct a separate distribution for the

62
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eigenvalues and eigenvectors. While both these models perform adequately, the

matrices recovered from generated vectors fail to satisfy all the properties that are

present in the original matrix representation. Therefore, we consider vector spaces

derived from manifolds that allow us to enforce certain properties of the recovered

matrices.

We evaluate the various models on three different data sets. The first two in-

volve synthetic data which consists of random graphs and graphs constructed by

performing Delaunay triangulations on point sets. The third data set consists of

graphs constructed from real-world images taken from the COIL database.

To construct a vector space, we need to place the graphs in a common represen-

tation. This is a difficult problem because there is no explicit labeling of the parts.

To find a common labeling, a measure of similarity is required; for example the

graph edit distance provides a well defined way of measuring the similarity of two

graphs. As an example, Sanfeliu and Fu[95] employed the concept of graph edit dis-

tance, giving separate edit costs for relabeling, insertion and deletion on both nodes

and edges. A search is necessary to locate the set of operations which have minimal

cost. The literature on graph matching is extensive and we refer the reader to section

2.1.3 of the literature review for a more in-depth discussion. We use the method of

Gold and Rangarajan[48] to perform the alignment step. Their method is an opti-

mization based approach that uses two-way assignment constraints to constrain the

vertices of both graphs and graduated non-convexity to prevent early convergence.

Computing distributions of graphs has proved difficult because of their non-

vectorial nature. Operations which are simple in a vector space, such as computing

the mean, become more problematic on graphs. Recently, the construction of graph

means and medians has received significant attention [42, 43, 41]. However, the

construction of the most representative graph median, the generalized median, re-

mains a computationally expensive procedure. Graph medians have been covered

extensively in the literature review and so we refer the reader to section 2.1.5 for a

complete discussion.

As discussed earlier, we require a way of representing graphs in a vectorial

space so we can make use of standard vectorial methods for constructing generative

models. There are a number of methods in the literature for representing graphs in

a vector space. Caelli and Kosinov[22] have used properties of the spectral decom-
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position to represent graphs and Shokoufandeh et al[101] have used the eigenvalues

of shock graphs to index shapes. Wilson et al [123] have shown how permuta-

tion invariant polynomials can be used to derive features which describe graphs and

make full use of the available spectral information. Riesen et al [90] have used

graph dissimilarity measures to describe a graph embedding approach. However, it

is difficult, if not impossible, to reconstruct graphs from these representations.

The closest work in the literature to the methods presented here are the papers

of Luo et al [75] and Xiao and Hancock [126]. Luo et al [75] directly exploit the

adjacency matrix by converting it into a long-vector. An initial correspondence step

is used to align the adjacency matrix and the long-vectors are analyzed using the

eigenmodes. Xiao and Hancock [126] have used the eigenvalues and eigenvectors

of the heat kernel to construct the requisite vectors before constructing a normal

distribution in the vector space. There are however problems with accurately recon-

structing new graphs with these methods.

An alternative method of constructing a generative model for graph structure has

been described by Torsello [102]. Based on an importance sampling framework, the

existence of each vertex is modeled as a Bernoulli trial. However, this requires the

assumption that vertices and edges are independent and therefore the foundations of

variations in graph structure, the co-occurrences of edges and vertices, are not mod-

eled. Furthermore, variations in graph structure can only be produced by removing

vertices from the model graph. This means that a vertex is required in the model

for every vertex in the sample graphs, whether that vertex is key to the structure

represented in the set or just noise.

Torsello and Dowe [103] extend the model and correspondence step using an

EM like approach. As above they model the existence of each vertex as a Bernoulli

trial but to relax the requirement that every vertex must be represented in the model

graph, they introduce a two part model. This consists of a structural part of the

model, that represents the core structural variations in the set, and a noise model,

that allows the generation of vertices that do not correspond to any vertex in the

core model graph. They also improve on the previous approach by the inclusion of

attributes on the vertices and edges.

While it is possible to sample from both these models, the lack of information

describing the co-occurrences of edges or vertices makes generation of examples
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drawn from the input distribution unlikely. These methods for constructing genera-

tive models of graphs are discussed in detail in section 2.1.6.

The remainder of this chapter is laid out as follows. In section 4.2 we outline the

steps required in constructing our generative model. Before describing our genera-

tive models we first give our alignment procedure in section 4.2.1. In section 4.2.2

we describe the first of our generative models while in section 4.2.3 we consider

the more advanced models based on manifolds. In section 4.3 we give experimental

results of the performance of the various models on two types of synthetic data and

real world data from the COIL data set. Finally, in section 4.4 we give our conclu-

sions and suggest some directions for future work. A table of the symbols used in

this chapter is given in section 4.5 on page 95.

4.2 Method

There are essentially four steps in constructing our generative models for graphs.

Firstly, since graphs are defined as relational structures and do not have a canonical

description, we must find a common space in which to represent the graphs in our

data set. This can be achieved by graph alignment which is discussed in section

4.2.1. Secondly, we need a representation of the graph in this space, in practical

terms this means a matrix or vector representing the graph relations. There are

a number of possible representations, such as the adjacency matrix or Laplacian.

Matrix representations for graphs were discussed in section 3.2.

These first two steps can be formalized as follows. Commencing from a set S of

sample graphs, we construct a matrix representation Xk for each Sk ∈ S . We then

perform our alignment step resulting in an aligned matrix representation X̊k. From

this we construct one or more long vectors xk for each sample graph which will be

used as input for constructing the model.

The next step is to define a parameterized distribution in the representation

space which can be learned from sample vectors. Here we use a normal distri-

bution on the vector space defined by a vectorization of the graphs. We discuss

these distribution in section 4.2.2. However, some of the representations cannot be

represented directly in vector space; we propose a solution to this problem in sec-

tion 4.2.3. Finally, if we want to use the generative model in the forward sense, we
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need a way of reconstructing graphs from vectors drawn from this distribution. This

is discussed throughout the following sections as different representations require

different reconstruction steps.

4.2.1 Alignment

Clearly, forming a vector representation directly from a graph is unsatisfactory,

since we do not know the order of the vertices and it is likely that equivalent vertices

come in different orders in the different sample graphs. Because of this, the infor-

mation contained in a graph may appear in different places from sample to sample.

To overcome this problem, we must perform an alignment step to bring each sam-

ple graph into the same order. Given a set of graphs S we align the graphs to some

reference graph R ∈ S. The choice of reference graph in this case is the largest

graph in the set, since this provides the most information for the other graphs to

align with.

R = argmax
Sk∈S

|Sk| (4.1)

If the graphs differ in size then we first pad them all to the size of R. We then

match all graphs in the set to the reference graph using the algorithm of Gold and

Rangarajan [48]. Finally we use the matching order to permute the vertices into the

same order as the reference graph.

It is worth noting at this point that the alignment is a fundamental part of the

process for graphs, and not merely a preprocessing step. If we wish to compute

the probability of a new graph according to our model, we must first align it to the

reference graph before using the model; the reference graph R is therefore retained

and is part of the model. In a classification problem, for example, the test graph

must be aligned to the reference graphs for each of the classes in turn. This means

that the class distributions reside in different spaces. Also note that if a graph is

presented to the system to be classified which is larger than the reference graph,

then information will be lost when it is aligned to the model.
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4.2.2 Basic Graph Distributions

The next step is to define a distribution which models the sample graphs. There

are a number of ways to do this, which depend on the nature of the graph data

we are interested in modeling. These models are based on the different matrix

representations which were described in section 3.2.

The Adjacency Model

The simplest vector representation of a graph comes from vectorizing the aligned

adjacency matrix Åk for each graph Sk ∈ S, i.e.

xk = vec(Åk) (4.2)

where the dimension of the long vectors xk is n. This is essentially the model

adopted in [75], although our alignment method is different to the one used in that

paper. Adjacency matrices are symmetric and have zero diagonal. Since matrix

addition preserves these properties, adjacency matrices naturally form a Euclidean

vector space in which we can use the normal formulae for mean µ and covariance

Σ of the vectors {x1,x2, ...,x|S|}.
We then propose a normal distribution in the vector space. This procedure has

been applied successfully in the literature in [75] and [126].

p(xk;µ,Σ) =
1

(2π)n/2
√
|Σ|

exp[−1

2
(xk − µ)TΣ−1(xk − µ)] (4.3)

The mean µ and covariance Σ are computed using the standard formulas:

µ =
1

|S|

|S|∑
k=1

xk (4.4)

Σ =
1

|S|

|S|∑
k=1

(µ− xk)(µ− xk)
T (4.5)

Every point in the space spanned by Σ represents the adjacency matrix of some

weighted graph. In order to sample a graph from this distribution, we must first gen-

erate a sample vector drawn from Eqn. 4.3. In practice this means performing PCA

on the vector space by obtaining the eigendecomposition of the covariance matrix
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as Σ = ΦΛΦT . We then draw a new parameter vector b where each component is

generated from a 1D normal distribution with variance given by the corresponding

diagonal element of Λ:

b(i) ∼ N (0,Λ(i, i)) (4.6)

The generated vector is then:

x′ = µ + Φb (4.7)

We can then generate a new graph by devectorizing x′, but because of the con-

tinuous distribution we will obtain a matrix with non-{0, 1} entries. This is suffi-

cient if we are considering weighted graphs, but if we wish to reconstruct discrete

graphs we must define a thresholding procedure. As discussed earlier there is also

the option of interpreting the values as edge probabilities but this ignores edge co-

occurrences. We make use of the thresholding function defined in 3.3.2, and recover

the new adjacency matrix A′ as follows:

A′ = θ[devec(x′)] (4.8)

We call this model the Adjacency Model (A).

The Laplacian model

The graph may also be represented by a Laplacian. The Laplacian model is identical

to the adjacency model with the substitution of the aligned Laplacian matrix L̊k for

the adjacency matrix Åk. As before, if we wish to recover discrete graphs then we

require a thresholding step. The threshold function θ is reused but the parameter β

is altered to account for the different values allowed in the Laplacian matrix. We

refer to this as the Laplacian Model (L).

However, Laplacians do not reside in a vector space. Laplacians are symmetric

positive semidefinite (PSD) matrices, but a linear combination of two such matrices

does not necessarily give a PSD matrix. As a result, not all points in the distribu-

tion represent legitimate Laplacians for some weighted graph. An alternative to the

straightforward model is to describe Laplacian matrices on the manifold of posi-

tive definite (PD) matrices. This is discussed in section 4.2.3. We will provide an
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experimental comparison later to determine the importance of these issues.

The Spectral Model

Spectral representations have attracted considerable recent interest[123, 101, 74,

22]. In certain circumstances, this type of representation seems to have advantages

over the adjacency or Laplacian matrices. Specifically, spectral analysis reveals sets

of vertices which are grouped together by many interconnections. Many types of

graphs which occur in practical problems have this kind of grouping property; for

example, local parts of an object are inter-related and do not change much between

different samples, although at the global level there may be significant changes. We

refer to these type of graphs as “structural”. This is to be contrasted with random

graphs, where edges are chosen randomly between pairs of vertices and there is no

local structure to the graphs. We would anticipate that spectral representations will

be effective for structural graphs but not for random graphs.

In the spectral representation, we use a spectral decomposition of the graph

structure into eigenmodes, and then model the variation in the eigenmodes. The

concept behind the spectral approach is that the decomposition represents the graph

in spectral modes which represent significant structures in the graph. These struc-

tures may be more stable under realistic noise models of graphs in typical problems.

We commence with the aligned normalized Laplacian N̊k of a graph Sk and then

find the eigendecomposition of the graph:

N̊k = VkEkV
T
k (4.9)

As described in the chapter on mixing spectral representations of graphs, the

eigenvectors given by the eigendecomposition are produced up to a sign factor of

±1. If left uncorrected this noise would destroy any model we fit to the vectors.

Therefore, we must apply a sign correction step. We use the same method as that

described in section 3.3.1 which is based on correcting the component of each eigen-

mode that would cause the largest error.

In Xiao and Hancock [126] the eigenvalues and vectors were combined by con-

sidering a single matrix based on the heat kernel. Here, we simply use the matrix

VE
1
2 produced from the normalized Laplacian to represent the graph. This matrix
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can be vectorized as such:

xk = vec(VkE
1
2
k ) (4.10)

The model then proceeds as above by constructing a normal distribution over

the vector set. To recover generated graphs in this representation we apply the

threshold function (equation 3.18) to the generated matrix. We must modify the

function to handle the different values that appear in normalized Laplacian matrices.

The threshold parameter β used in the threshold function can be set by considering

the average off diagonal value in the normalized Laplacian matrices of the sample

graphs. We term this model the Spectral Model (S).

The Dual Spectral Model

We have found that the spectral model will not lead to a satisfactory vector space,

since combining the eigenvalues and eigenvectors in this way distorts the distri-

bution of the eigenvalues. This can be seen by mixing the eigenvectors from two

slightly different graphs. If we average these vectors and they are not pointing in the

same direction, the resultant length will be shorter than the lengths of the originals.

Since the eigenvalue is encoded in the length, this results in smaller eigenvalues and

unsatisfactory reconstructions.

An alternative is to model the eigenvalues and eigenvectors separately. We de-

fine two vector spaces, one for the eigenvalues and one for the eigenvectors. For

each graph Sk ∈ S we compute two vectors xEk and xV k as follows:

xEk = diag(Ek) (4.11)

where diag(X) produces a vector of the main diagonal of a matrix X. The

second vector space is given by the eigenvector matrix:

xV k = vec(Vk) (4.12)

We therefore have two sets of long vectors, one based on the eigenvalues {xE1,

xE2, ..., xE|S|} and a second based on the eigenvectors {xV 1,xV 2, ...,xV |S|}. We

then create two normal distributions over these vector sets with µE,ΣE and µV ,ΣV

respectively.
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In order to be a valid decomposition, it is clear that any eigenvector matrix

should always be an orthogonal matrix. This is a similar problem to the one iden-

tified with the Laplacian model. In fact these matrices lie on the manifold of or-

thogonal matrices and not in vector space. It is not clear that it is a good thing to

represent them in a vector space. For example, neither the mean nor a generated

sample will be orthogonal and will need conditioning before it can be used to re-

construct a graph. In order to sample a graph, we draw new vectors x′E,x
′
V from

the normal distributions as before.

The elements of x′E are the diagonal elements of the diagonal eigenvalue matrix

E′. We recover the generated long vector describing the eigenvectors as such:

V′ = devec(x′V ) (4.13)

We condition the generated eigenvectors using an orthogonalization step which

produces an orthogonal set of vectors.

V′′ = (V′V′
T

)−
1
2 V′ (4.14)

We normalize the orthogonal vector set and then reconstruct the graph by recov-

ering the normalized Laplacian matrix. This matrix is thresholded using θ:

N′ = θ[(V′′)E′(V′′)T )] (4.15)

We will refer to the this spectral model with two distributions as the Dual Spec-

tral Model (DS).

4.2.3 Manifold Graph Distributions

Many types of data are constrained in some way. A classic example of this is given

by surface normals - these are vectors for which the direction is important but which

should always be unit length. Unit vectors form a subspace or manifold of normal

vector space, since only unit vectors are allowed. This manifold is non-linear or

“curved” since a linear combination of unit vectors does not always produce another

unit vector. It is difficult to model the distributions of data on these curved manifolds

as the distributions no longer have simple forms and it is hard to compute correct
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statistics.

One approach that can be applied when the manifold is a hypersphere (as in

the case of unit vectors) is to use directional statistics to construct the distribution

directly on the manifold. Distributions such as the Fisher-Bingham distribution[78]

are capable of modeling data on this type of manifold but the estimation of model

parameters [64] becomes problematic when working with high dimensional data.

The exponential map offers a different solution to these problems by provid-

ing a projection from the manifold onto a linear vector space. This vector space is

in fact the tangent space to the manifold at a particular point. The projection has

the following very useful properties: a) It is bijective1, which is essential for re-

constructing new graphs and b) The geodesic distance from the point of projection

across the manifold to another point is equal to the Euclidean distance from the cen-

ter to the projection in the tangent space. As a result, if the data mean is the center

of projection, then we can compute central moments (such as the covariance matrix)

in the normal way using positions in the tangent space. We can then use a standard

distribution such as the normal distribution in the tangent space. The map requires

two elements, firstly the log map, which projects a point v from the manifold to the

tangent vector space resulting in a vector x:

x = logm v (4.16)

where m is the center of projection. Note that this formula is just notation, the

actual solution would be computed using geometry. Secondly, the exp map goes

from tangent space back onto the manifold:

v = expm x (4.17)

With these ingredients, we can compute the geodesic mean, which is the mean

of the points on the manifold. This is defined as:

m∗ = arg min
∑
i

d2(m,vi) (4.18)

where vi is a sample point and d(·, ·) is the distance on the manifold. This can

1If the manifold has a cut locus then technically the mapping is only bijective if a) the cut locus
is avoided and b) we only work within the tangential cut locus in the tangent space.
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be computed via the following iterative formula:

mt+1 = expmt

1

|S|
∑
i

logmt
vi (4.19)

The iteration stops when the new mean mt+1 is within a certain tolerance of the

old mean mt. With the mean to hand, the covariance matrix (on the tangent plane)

is simply:

Σ =
1

|S|
∑
i

(logm vi)(logm vi)
T (4.20)

One way to use this map to extend our dual spectral model would be to enforce

the property that generated eigenvectors are of unit length. We first note that eigen-

vectors reside on the manifold of unit length vectors. We can then use the exp and

log maps to define a mapping between the manifold of unit length vectors and a

linear tangent space.

To proceed, we take the eigenvector from mode i from each sample graph and

construct a mapping to a tangent space. This tangent space is based about the mean

vector from that mode which can be computed using the iterative approach above.

With all the eigenvectors from mode i projected into the linear tangent space, we can

use standard statistical methods to construct a normal distribution over the points in

the tangent space. After a vector has been sampled from this distribution, it is

projected back onto the manifold of unit length vectors thereby ensuring it has the

required unit length property.

However, this approach will only construct a set of unit length vectors and an or-

thogonalization step will still be required. Indeed, we have found that this approach

adds little to the model and ideally we require a set of orthogonal eigenvectors to be

generated directly. We discuss such an approach next.

The Orthogonal Map

We first note that the eigenvector matrix V of a sample graph resides on the mani-

fold of orthogonal matrices. The group of special orthogonal matrices, SO(n) is a

well studied group because of its importance in physics, and an exponential map is

already known for this group. Our matrices are orthogonal, with VVT = I and not

special orthogonal, which carries the extra condition |V| = 1, but by flipping the
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sign of one of the eigenvectors in V we can easily enforce this condition.

Now, if we let X be a real antisymmetric matrix, then V = exp(X) is a special

orthogonal matrix since:

VVT = exp(X) exp(XT ) = exp(X + XT ) = I (4.21)

In fact, the space of antisymmetric matrices is the Lie algebra for the space of

orthogonal matrices. For this manifold, the exponential and logarithm maps[86]

are:

X = logM V = log MTV (4.22)

V = expM X = M exp X (4.23)

The geodesic mean of the projection M can be computed using a formula similar

to the iterative one detailed above:

Mt+1 = expMt

1

|S|
∑
i

logMt
Vi (4.24)

While the matrix exponential is simple to compute, the matrix logarithm has

multiple solutions, only one of which is the required real anti-symmetric matrix

(the others may be complex). This matrix is not trivial to find; we use the method of

Gallier and Xu[46]. Using this map with the dual spectral model gives us the Dual

Spectral, Orthogonal map model (DSO).

The Positive-definite Map

In section 4.2.2, we modeled the Laplacian of the graph using simple vectorization.

This model generates non-Laplacian matrices since the generated matrices are not

always PSD. We could solve this problem using an approach similar to that de-

scribed above for orthogonal matrices. However, the manifold of PSD matrices is

not appropriate for this type of modeling since the matrices have no inverses and

therefore do not form a continuous group.

A solution to this problem is to instead construct the tangent space on the man-

ifold of PD matrices. We can map Laplacians onto the space of PD matrices by
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adding a small diagonal offset, L → L + εI. In effect, this offset is related to the

cost of padding a graph with extra vertices.

The exponential and logarithm maps for the manifold of PD matrices[86] is:

X = M
1
2 log

[
M− 1

2 (L + εI)M− 1
2

]
M

1
2 (4.25)

L = M
1
2 exp

[
M− 1

2 XM− 1
2

]
M

1
2 − εI (4.26)

The geodesic mean M on this manifold can be computed using equation 4.24

with the formulas for the exp and log maps replaced by those in equations 4.25 and

4.26.

Applying this map to the Laplacian model gives us the Laplacian, positive defi-

nite map model (LM).

4.3 Experimental Results

We evaluate the generative graph models against a number of criteria, using both

synthetic data and graphs derived from images. In particular, we examine the clas-

sification performance, basis restriction error, and the distance distributions, as well

as visualizing the generated distribution of graphs. We evaluate these criteria for all

the generative models described above. The adjacency model (A) is the straightfor-

ward vector space of A. The Laplacian model (L) is the vector space of L, whereas

the Laplacian map model (LM) uses the PD logarithmic map before defining the

vector space. The spectral models use the spectral decomposition of the normalized

Laplacian for modeling. The spectral model (S) uses a single vector space for both

the eigenvalues and eigenvectors, whereas the dual spectral model (DS) uses sepa-

rate vector spaces for each element. Finally, we have the model which includes the

exponential map on the eigenvector matrix; the dual spectral model with orthogonal

matrix mapping (DSO).

4.3.1 Data Sets

To assess the effectiveness of our models we use three different data sets each con-

taining a different type of graph.
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Random Data Set

The random graph data set is created using a reference graph of 20 vertices with

pairs of vertices connected at random with probability 0.6. We then create a num-

ber of edited versions of the reference graph by swapping edges and non-edges at

random with a probability which varies with the level of error we wish to produce.

For the classification experiments, this edit rate varies and for the other experiments

it is 0.04. On average, a graph has 114 edges and 4.6 edits in this case.

Delaunay Data Set

The Delaunay data set uses 20 randomly selected 2D points which are connected

via their Delaunay graph. To vary the graphs, we move a fixed number of points

to a random location in the space and then recompute the Delaunay graph. For one

moved point, the average number of edges is 49 and the average number of edge

edits is 4.37.

COIL Data Set

The COIL database consists of images of a number of objects, with 72 different

views of each object. We find the corner points in the image and form a graph

from them using a Delaunay triangulation[125]. In our experiments, we use four

objects which are shown with their associated Delaunay graphs in figure 4.1. The

pairs chosen for our classification experiments are of similar sizes and have similar

numbers of edges, in order to provide a difficult classification problem. These pairs

are objects 8 and 16, and objects 4 and 13.

4.3.2 Classification

Our first investigation uses the generative models in a traditional way as a classi-

fier. We use a Gaussian classifier with the distribution for each class defined as in

equation 4.3. The mean and covariance is estimated from a training set for each

class and new examples classified according to the most probable class. There is

one additional complication due to the alignment problem; each test sample must

first be aligned to the reference graph for a particular class and, in the case of the

spectral methods, sign-corrected before computing the class probability.
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Figure 4.1: COIL data used: Objects 4,8 13 and 16. A image from each set is shown
on the left and the resulting Delaunay graph is shown on the right.
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Figure 4.2: Classification results using the random data set.
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Figure 4.3: Classification results using the Delaunay data set.
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Figure 4.4: Classification results using graphs from objects 8 and 16 from the COIL
data set.
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Figure 4.5: Classification results using graphs from objects 4 and 13 from the COIL
data set.
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In the case of the synthetic data, we perform the training with 100 graphs and

produce another set of 200 graphs to test the trained models. We introduce in-

creasing levels of corruption into the graphs of the synthetic data sets to understand

how effective our models are at handling noise. This corruption is provided by the

methods discussed in 4.3.1. For the COIL data set, we do not vary the level of

corruption and since we do not have the opportunity to generate new data, 10-fold

cross-validation is used to obtain estimates of the error rate.

In figure 4.2 we give the classification results for the random data set. In this

data set the non-spectral models perform very similarly and significantly better than

any spectral model. Of the spectral models, DS and DSO have approximately equal

performance while S is generally the worst model.

Figure 4.3 shows the classification results for the Delaunay data set. The non-

spectral methods are still grouped and we see slightly worse performance from all

three models. The dual-spectral model provides the best classification accuracy,

outperforming all other methods across all levels of corruption. Adding the orthog-

onal map to this model seems to hinder classification performance and produces

unexpected results at low levels of corruption. In fact, the performance when 3, 4

or 5 points are moved is better than when only 2 points are moved. However, the

observed classification accuracy across all models does seem to be worse than the

trends suggest it should be at a corruption of 2 points.

The classification results for the COIL data set are shown in figures 4.4 and 4.5.

In the first experiment (objects 8 and 16) the non-spectral models produce an error

rate in the range of 0.3 to 0.35. Adding the PD logarithmic map to the Laplacian

model reduces the error slightly. In the second experiment (objects 4 and 13) the

error rates for the non-spectral models are significantly worse, with both A and L

achieving an error rate of approximately 0.38. Using the LM model here reduces

the classification accuracy compared to the standard Laplacian model and results

in a very poor error rate of almost 0.5. On the other hand, the spectral models

DS and DSO achieve a low, constant error rate on both experiments. The model

based on the single spectral matrix produces consistently poor results throughout

both experiments.

There are a number of conclusions we can draw from these results. For random

graphs, the non-spectral models perform best; the A, L and LM models all perform
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similarly. The spectral models do not perform as well. This is unsurprising since

our initial hypothesis was that the spectral decomposition may represent preserved

parts of the graph better; the random editing procedure has no regard for structure

in the graph and seems to generate a set of connections which behave like a random

vector. This situation is reversed with the Delaunay graphs; the edit operation here

will preserve some parts of the graph while changing others. Here the DS model

is superior although adding the orthogonal map produces some unexpected results.

In the COIL data set, the data is even more structured, with parts of the graph

remaining relatively invariant as a particular view of an object remains in the image.

Here both the DS and DSO models perform similarly and very well. In all cases the

S model does not perform well.

4.3.3 Distributions

We show distributions for all six models on the random and COIL data sets. This

allows us to make a visual check on the form of the distributions. Both the sample

graphs and a set of generated graphs are shown for each model to see if the generated

graphs approximately match the distribution of sample graphs.

The projection space for each data set is established by performing PCA on the

adjacency matrices of the sample graphs. Generated graphs are reconstructed back

to an adjacency matrix and are also projected into this space. With the exception

of model A, it is important to make the distinction that we are not visualizing the

vector spaces that the models are based in, we are only visualizing the sample and

recovered adjacency matrices.

We now present figures showing the distributions. In all cases blue crosses

indicate sample graphs and red squares indicate generated graphs. We begin with

figure 4.6 which shows the distributions of the non-spectral models on the random

data set. In these plots, generated graphs lie within the sample distribution but do

not fill the space. On the other hand, when the DS and DSO models are applied

to this data set the generated graphs fill the space of sample graphs much more

effectively. The spectral results for the random data set are shown in figure 4.7.

Graphs generated using the S model fall outside the distribution of sample graphs.

This is due to the eigenvalue magnitude problems mentioned earlier which shift the

generated distribution away from the sample distribution. In this data set the DSO
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Random Data - Model A

Random Data - Model L

Random Data - Model LM

Figure 4.6: Distributions of the non-spectral models on the random data set. Blue
crosses indicate sample graphs and red squares indicate generated graphs.
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Random Data - Model DS

Random Data - Model DSO

Random Data - Model S

Figure 4.7: Distributions of the spectral models on the random data set. Blue crosses
indicate sample graphs and red squares indicate generated graphs.
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COIL Data - Model A

COIL Data - Model L

COIL Data - Model LM

Figure 4.8: Distributions of the non-spectral models on the COIL data set. Blue
crosses indicate sample graphs and red squares indicate generated graphs.
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COIL Data - Model DS

COIL Data - Model DSO

COIL Data - Model S

Figure 4.9: Distributions of the spectral models on the COIL data set. Blue crosses
indicate sample graphs and red squares indicate generated graphs.
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Figure 4.10: Basis restriction error using the random data set.

model appears to offer the set of graphs that most accurately match the distribution

of sample graphs.

In figure 4.8 we show distributions for the non-spectral models when applied to

the COIL data set. Compared to the random data set, the models appear to be more

successful at generating graphs across the whole space of sample graphs. Turning to

the spectral models, which are shown in figure 4.9, the generated graph distributions

are still within the space of sample graphs but cover it slightly less successfully.

Again, using model S results in a poor distribution of generated graphs.

4.3.4 Basis Restriction Error

We can gain some measure of the quality of the distributions by how compact the

representation is. This essentially means reconstructing the sample graphs, using

only a restricted number of principal components of the distribution. The process

involves firstly projecting a sample graph into the vector space, retaining only a

limited proportion of the principal components of the model, and then reconstruct-

ing the sample graph. The error is the average Frobenius norm between the matrix

representations of the initial and reconstructed graphs.
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Figure 4.11: Basis restriction error using the Delaunay data set.
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Figure 4.12: Basis restriction error using graphs from object 16 from the COIL data
set.
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Since we are reconstructing the sample graphs with a limited amount of informa-

tion, the matrices describing the reconstructed graphs can be very poor descriptions

of the graphs they represent. This is especially true in the case of the normalized

Laplacian since it has non-discrete off diagonal elements. This makes its recovery

almost impossible when the majority of information is removed from the model. To

allow the basis restriction tests to be applied to all models, including those based

on the normalized Laplacian, we substitute the Laplacian representation for the nor-

malized Laplacian when needed.

The results of the basis restriction tests for the random data set are shown in

figure 4.10. Model A results in the most compact model closely followed by L and

LM. The DS model is next best although adding the orthogonal map reduces the

compactness of the model. The S model is the least compact. The same results

are observed for the Delaunay data set in figure 4.11. Some of the errors increase

as more information is included in the model, this is seen in DSO and S in both

the random graphs and the Delaunay graphs. This is due to problems accurately

recovering the matrix representations from the reconstructed vectors and is similar

to the problems associated with the normalized Laplacian mentioned above.

In figure 4.122 the results of the basis restriction tests are given for object 16

of the COIL data set. The differences in the compactness of the models are less

than the previous data sets. Again model A results in a very compact model. Using

model L reduces the compactness but applying the PD map improves it almost to

the level of model A. The DS model starts quite poorly but improves significantly

as more information is included. Models DSO and S are the least compact and

improve at a much slower rate than DS.

Over all three data sets, the non-spectral models result in the more compact

models. Of the spectral models, only the DS model comes close to matching the

compactness of the non-spectral models. Adding the orthogonal map reduces the

compactness of the DS model in all cases. Model S is generally the least compact

model.
2Note the difference in the axis scale for the basis restriction error plots: the plot representing

the random and Delaunay data has the percent of all eigenmodes while the COIL data has a fixed
number of eigenmodes.
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4.3.5 Distance Distribution

Since we are modeling the graphs by normal distributions over some vector space,

it is important to establish whether the distributions do in fact conform to a nor-

mal distribution. One way to do this is to look at the distribution of standardized

distances within each model. The standardized distance is:

d(x) = (x− µ)TΣ−1(x− µ) (4.27)

If the distribution is normal, this should be a chi-squared distribution with n de-

grees of freedom, where n is the number of principal components of the distribution

that we use. Clearly we would expect the distribution to become more normal as

we reduce the number of components; here we are interested in showing how much

the distributions deviate from normality as we fix the number of components. We

select the first 10 principle components.

The distance distributions for the random data set are given in figure 4.13. Here

we see that the eigenvalues and eigenvectors of the DS and DSO models are very

close to normal (middle and bottom graphs). Model S is also close to normal but the

non-spectral models deviate slightly from the chi-squared distribution (top graph).

Figure 4.14 shows the distance distribution for the Delaunay data set and we see

broadly the same results. All models follow the chi-squared distributions slightly

worse than in the random data.

In figure 4.15 we give the results for object 8 from the COIL data set. Here,

the non-spectral models perform poorly with the exception of model L which is

reasonably close to the chi-squared distribution. Of the spectral models, model

S performs the worst while the eigenvalues of the DS and DSO models are quite

good. When the eigenvectors are considered, we see that the eigenvectors of the

DSO model slightly outperforms the eigenvectors of the DS model.

Throughout the distance distribution tests the spectral models, specifically DS

and DSO, have performed very well indicating that the distribution of vectors is

closer to normal than those of the non-spectral models. However, this is not as

clear in the non-spectral models with the exception of model L which does seem to

perform well in the random and COIL data sets.
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Figure 4.13: Distance distributions on the random data. The results are split across
three graphs to aid interpretation. The top graph describes models A, L, LM and S.
The second graph shows the distance distribution for the eigenvalues used in the DS
and DSO models while the third graph shows the eigenvectors for DS and DSO.
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Figure 4.14: Distance distributions on the Delaunay data.
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Figure 4.15: Distance distributions on the COIL data using graphs from object 8.
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4.4 Conclusions

We have proposed and examined a number of different models on aligned graphs.

By vectorizing the canonical matrix representations we are able to construct a vec-

tor space suitable for basing a generative model on. In this vector space we are able

to estimate statistical quantities such as the mean and covariance, a task that is very

complex to perform on non-transformed relational data. Using the mean and co-

variance we form a model representing the underlying structural variations present

in the set of graphs. The models are fully generative in the sense that we can use

them to generate new graphs, although in some cases a generated representation

may require a recovery step before it represents a valid graph.

The different models we construct range in complexity. The simplest are those

formed on the adjacency and Laplacian matrices. While these form adequate models

they require a conditioning step to transform a generated vector into a valid graph.

Next, we considered models based on the spectral decomposition of a graph. We

expected that these will perform better as input to our approach due to the success

of spectral methods at explaining graph structure. They are limited however by

constraints on the spectral matrices and generated examples do not satisfy these.

By using the exponential map we were able to overcome these difficulties.

Of the non-spectral models, both A, L and LM seem to perform quite similarly

although using the PD map gives a slight improvement in compactness in certain

situations at the expense of normality. For the spectral models, it is clear that S

gives an unsatisfactory model of the distribution. The DS and DSO models give

more normal distributions but are substantially less compact than the non-spectral

models. This is true in both the synthetic data and the real world data. In the

classification experiments, the DS and DSO models perform significantly better on

the COIL data set than the non-spectral methods. In the Delaunay data set the

DS model performs very well, but adding the orthogonal map seems to reduce the

performance. Finally, in the random data set, we see the non-spectral methods

significantly outperform the spectral methods.

The plots describing the distribution of sample and generated graphs generally

show that the generated graphs fall within the distribution of sample graphs. In

these tests, the DS and DSO models perform well on data from both the random and

COIL data sets. In contrast, the distribution of generated graphs resulting from the S
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model is significantly different to that of the sample graphs. This is due to problems

described earlier with encoding the eigenvalue magnitude in vector lengths.

The results reinforce the idea that the spectral methods are better at explaining

structural data. In general we see the performance of the non spectral methods

decrease when moving from random data to more structural data, i.e. random graphs

to Delaunay graphs and finally to graphs from the COIL data set, while we observe

the opposite for the good spectral methods (DS and DSO). Clearly any useful real

world data will be more on the structural end of this spectrum and therefore the DS

and DSO methods would be more appropriate for modeling it and generating new

examples.

4.4.1 Future Work

We would like to extend this work with a further investigation into the nature of

applying the orthogonal map to the dual spectral method. In theory, it is not clear

why it should reduce the performance of the dual spectral method and indeed, we

expected it to enhance the performance. By basing the distribution in the tangent

space to the manifold of orthogonal matrices, we are computing the mean and co-

variance more accurately than is possible in the original space. This should have

translated into an increase in performance when we performed our experimental

analysis but in the best case the method only equals the performance of the DS

model. One could argue that the distance distribution tests indicate that the nor-

mality of the DSO model is superior than the DS model, but it is a very minor

improvement. In any case a further investigation is required.
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4.5 Symbols

S A set of graphs.

R The reference graph from the set S.

Sk A graph from the set S.

Xk A matrix representation of graph Sk.

xk A vectorial representation of graph Sk.

Å An aligned adjacency matrix representation of a graph.

L̊ An aligned Laplacian matrix representation of a graph.

N̊ An aligned normalized Laplacian matrix representation of a graph.

E,V The set of eigenvalues E and eigenvectors V resulting from the eigende-

composition of an aligned normalized Laplacian matrix representation

of a graph N̊.

x′ A generated vectorial representation of a graph.

A′ An adjacency matrix representation of a generated graph.

E′,V′ A generated set of eigenvalues E′ and eigenvectors V′.

V′′ A generated set of orthonormal eigenvectors.

N̊′ A generated normalized Laplacian matrix representation of a graph.

θ A thresholding function for a matrix representation. A parameter β

determines the threshold level.

µ A mean vector.

Σ A covariance matrix.

Λ,Φ The set of eigenvalues and eigenvectors resulting from an eigendecom-

position of the covariance matrix Σ.

b A parameter vector of a multivariate normal distribution.

m The geodesic mean vector.

M The geodesic mean matrix.



Chapter5
Parts Based Generative Models for

Graphs

5.1 Introduction

The construction of a generative model for graph structure can proceed in a number

of different ways. In the previous chapter we described a generative model that

considered graphs as whole entities and sought to model the structural variations

in a set by using a normal distribution on vectorial representations of graphs to

identify the principle components of variation. We adopt a different approach here.

Instead of constructing a generative model over the whole graph, we subdivide the

sample graphs into a number of logical substructures and model the variation in

these substructures and the manner in which these substructures are connected. In

short, this involves the construction of three generative models in total that when

combined give us the ability to generate complete graph structures.

The idea of decomposing graph structure into a number of logical substruc-

tures to aid interpretation, identification and pattern recognition algorithms is not

new. The field of graph segmentation (section 2.1.4) has long tried to find suitable

approaches to the decomposition of an image or more generally graphs. Applica-

tions of image segmentation include analyzing medical images, locating features in

satellite imagery, detecting objects in scenes and fingerprint recognition. Perhaps

the best known and most widely applicable is Shi & Malik’s normalized cut algo-

rithm [100]. This algorithm uses graph spectral methods to find the optimal way to

96
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cut a graph. Furthermore, its cut criterion is normalized by the number of vertices

on either side of the cut. Therefore, it does not repeatedly cut very small structures

as some other cut criteria such as Wu & Leahy’s minimum cut [124] can do.

Our approach of parts-based structure generation resembles those of chemical

structure elucidation[82] and de novo approaches[97] where a new molecule is built

up sequentially from a number of smaller fragments (section 2.2.3). Generally,

given some data on the molecule in question, these approaches produce a structural

representation of the molecule most consistent with the data. One of the earliest of

these programs was CONGEN [23] which was shortly followed by GEONA [24].

Later CHEMICS [45] was developed which explored the fragment combinations

using a more systematic method than GEONA. More recently, Porquet et al [87]

describe a “self generation algorithm” which seeks to build large 3D molecules by

the selective joining of small fragments.

However, our approach differs in a number of ways. Instead of selecting the best

fragments (substructures) that fit the data, we select substructures according to the

distribution of substructures present in the sample graphs. Furthermore, we do not

use an incremental joining strategy, the connections between substructures chosen

for a new graph are all produced simultaneously when we sample from our model

of substructure connection.

Therefore, our approach lends itself to graph types that are easily decomposed,

for example, graphs of chemical structures or point sets of objects. Clearly this ap-

proach will only be successful when the graphs in the sample set have a reasonable

degree of similarity and therefore subgraphs that are similar will be found in many

of the sample graphs. The same applies to the connections between subgraphs. The

algorithm excels on graphs with small groups of densely connected vertices where

the small groups are sparsely connected.

Furthermore, by decomposing the graphs we greatly reduce the complexity of

the generative model. This in turn reduces the errors when we sample from the dis-

tributions and allows us to generate graphs that more accurately reflect the original

distribution of graphs. Moreover, the computational complexity of the algorithm is

reduced and the approach may be used on large graphs.

The remainder of this chapter is laid out as follows; in section 5.2 we describe

our method which is split into two parts, the construction of the models and gener-
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ating new graphs from the models. In section 5.3 we provide experimental results

for our approach on both synthetic data and real-world data. Our real-world data

comes from examining different views of articulated objects. Finally in section 5.4

we draw our conclusions and suggest some future directions for this work. A table

of the symbols used in this chapter is given in section 5.5 on page 124.

5.2 Method

We describe our algorithm in two sections. First we discuss how the sample graphs

are prepared for use with the model, then we describe the models themselves and

how we can sample from them to generate a new graph.

We provide an overview of the approach here. The algorithm proceeds from a

sample set of graphs. Each graph in the set is decomposed into a set of subgraphs

by performing a number of graph cuts. The subgraphs that result from this and the

cut connections between subgraphs are recorded. These two sets will form the basis

of the model.

To determine which subgraphs represent similar structure, we perform cluster-

ing on the subgraphs produced from all sample graphs. We perform an alignment

step by choosing a reference graph for each cluster and aligning all subgraphs to

their associated reference graph. The matrices storing the cut connections are also

permuted to correspond to the new alignments.

Once the clustering is complete and each subgraph is assigned to a cluster we

can change our view of the cut connections from connections between two sub-

graphs to connections between two clusters. We can also change our high-level

view of each sample graph from consisting of a set of subgraphs to consisting of

a set of clusters. This view is essential to accurately construct the model and al-

lows us to think about each sample graphs in terms of a set of clusters and a set of

connections between clusters.

Using this information we can construct three models that describe the structural

variation present in the sample graphs.

• A distribution over which set of clusters is present in each sample graph.

• The distribution of subgraphs in each cluster.
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• The distribution of connections between clusters.

The process of generating a new graph by sampling from the three models above

is given in section 5.2.2. First we find a configuration of clusters according to the

distribution of clusters present in the sample graphs. Next a subgraph must be

chosen to represent each cluster present in the new graph. Finally, we generate

the connections between each pair of clusters found in the new graph using the

distribution of the cut connections.

5.2.1 Constructing the Generative Model

Conditioning the Graphs

We must first condition the graphs for use with the generative model. This involves

segmenting a graph to find the subgraphs and resulting connections between the

subgraphs. These are recorded using a matrix representation. To simplify working

with the matrix representations we pad them with dummy vertices so they are all

equal size.

The algorithm commences from a sample set of non-directed graphs S which

may or may not be weighted. We compute the adjacency matrix representation

(section 3.2.1) Sk for each graph Sk ∈ S.

We seek a partitioning of each sample graph Sk such that each sub-structure

i present in the graph is represented by a subgraph Fki with associated adjacency

matrix Fki. Each subgraph adjacency matrix represents the subgraph vertices in the

partition and the edges wholly within the partition. The set of subgraphs for a graph

Sk are given by the set Fk. Clearly this process fails to capture information about

the way sub-structures are connected to each other, so we store connections between

each pair of subgraphs Fki and Fkj in a connection matrix Ckij . The connection

matrices are created by recording the cut connections between two subgraphs. If a

connection is cut between vertex u ∈ Fki and v ∈ Fkj thenCkij(u, v) = 1 otherwise

Ckij(u, v) = 0.

This partitioning process is quite flexible and adaptable to the specific data set

the process is employed on. For example, we do not require an equal number of

partitions for each graph in the sample set allowing graphs with vastly different

levels of structure to be accurately represented. The partitioning process itself can
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Figure 5.1: An example showing (a) the original graph, (b) the partitioned adjacency
matrix of the graph and (c) the padding of the subgraph adjacency matrices and
connection matrices.

be done using conventional methods such as Shi & Malik’s normalized cut [100] or

a more application specific method.

Due to the sample graphs varying in size and the partitioning process producing

subgraphs of various sizes, the subgraphs can vary dramatically in size. To simplify

working with these different sized subgraphs and connection matrices we find the

size n of the largest subgraph and then pad all other subgraph adjacency matrices

Fki and connection matrices Ckij with zeros so they are n×n in size. The adjacency

matrices Sk are also expanded with dummy vertices to accommodate the padded

subgraph adjacency matrices and connection matrices. The result of this are padded

sample graph adjacency matrices Šk, padded subgraph adjacency matrices F̌ki and

padded connection matrices Čkij .

Figure 5.1 shows an example of the partitioning and padding process. Figure

5.1(a) shows the graph with partitions as ellipses. Small circles and red edges in-

dicate the vertices with cut connections. Figure 5.1(b) is a representation of the

adjacency matrix of a sample graph (Sk) that has been partitioned. The small graph

pictures indicate the subgraphs and the red lines indicate where they connect to

other subgraphs. The connection matrices use a 1 to indicate that a connection is

present between those two vertices and the remainder of the connection matrix (all

zeros) is omitted for visibility. Since the graphs are undirected only the connection

matrices in the upper triangle of the adjacency matrix are shown. Figure 5.1(c) is

the adjacency matrix of the padded sample graph (Šk) and is 3n× 3n in size. Each



CHAPTER 5. PARTS BASED GENERATIVE MODELS FOR GRAPHS 101

subgraph and connection matrix has been copied into the appropriate place. In this

example the subgraph in the top left corner is the largest in the whole set of sub-

graphs and therefore n is equal to the size of this subgraph. This is why there is no

padding around this subgraph in figure 5.1(c).

Clustering the Subgraphs

In this section we describe how we produce clusters of subgraphs such that sub-

graphs belonging to the same cluster represent similar structure. This information

is used to organize the input of subgraphs and connection matrices to the generative

model. Furthermore, it allows us to view the connections between subgraphs as

connections between clusters instead.

To cluster the subgraphs we compute the distance d(., .) between every pair of

subgraphs using the weighted graph matching approach of Gold & Rangarajan [48].

The set of all subgraphs is given by F =
⋃|S|
k=1Fk. The distance between two sub-

graphs Fki and Flj is given by d(Fki, Flj). The correspondence matrix obtained from

each match is transformed into a permutation matrix using the Hungarian method to

obtain the best alignment between the two subgraphs. The permutation matrix for

matching Flj to Fki is given by M(Fki, Flj). The distances given by d(., .) between

the subgraphs are used to form an affinity matrix and Normalized Cut clustering is

performed on this matrix. Using the result of the clustering we define a function ψ

that maps a subgraph Fki to the cluster y that it belongs to.

ψ : Fki → y (5.1)

The number of cuts we allow here corresponds to the number of different struc-

tures in the sample graphs that are needed for the generative model to accurately

convey the sample graph’s structures. This is best chosen using some domain

knowledge about the problem in question however, a limit such as the cut threshold

used in Normalized Cut clustering could be used.

With the clusters of subgraphs to hand we compute a reference subgraph for

each cluster. The other subgraphs in the cluster will be matched to this. The refer-

ence subgraph Rc for a cluster c is chosen to be the one with the smallest distance

to all other subgraphs in that cluster:
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Rc = argmin
A∈Xc

∑
B∈Xc

d(A,B) (5.2)

whereXc = {∀Fki ∈ F|ψ(Fki) = c} is the set of subgraphs belonging to cluster

c.

We can then use Rc to simplify the equations involving match matrices M. We

define the new match matrices to be M′(Fki) which holds the alignment between

subgraph Fki and its associated cluster reference subgraph Rc where c = ψ(Fki). In

other words:

M′(Fki) = M(Rc, Fki) (5.3)

Each subgraph adjacency matrix is aligned to its cluster’s reference subgraph

using M′:

F̊ki = M′(Fki)F̌kiM
′(Fki)

T (5.4)

where the aligned padded subgraph is now denoted F̊ki.

Since the vertices of each subgraph have been rearranged, the connection ma-

trices must also be permuted. The permutation of the connection matrix between

subgraphs Fki and Fkj is given below:

C̊kij = M′(Fki)ČkijM
′(Fkj) (5.5)

The full adjacency matrices representing each sample graph are updated with

the alignments and padding and are denoted S̊k.

A problem can arise due to the fact that a number of equally valid alignments

can be returned by the matching algorithm. Although these alignments are all valid

in the context of matching subgraphs, they are not all valid when the connection

matrices are permuted.

To illustrate this problem we provide the following example. Suppose from

sample graph S1 we have two subgraphs F11, F12 ∈ F1 and a connection matrix

Č112. From S2 we also have two subgraphs F21, F22 ∈ F2 and a connection matrix

Č212. The subgraph pair F11 and F21 are from the same cluster and the pair F12 and

F22 are from a different cluster. Figure 5.2 shows this arrangement diagrammati-
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F11 F12
Č112 F21 F22

Č212

A
′

B
′

C
′
D
′

E
′

Figure 5.2: An alignment problem: if care is not taken when aligning isomorphic
subgraphs then an incorrect alignment can be produced when the connection matri-
ces are considered.

cally. The vertices in F11 are labeled A,B,C,D and the vertex in F12 is labeled E.

The subgraphs from S2 are labeled identically but with primes.

Say F21 is the cluster reference and we align F11 to it. Since both subgraphs

are isomorphic and ring shaped there are many possible valid matches. Suppose

that the matching algorithm returns the following mapping: A → D′, B → C ′,

C → B′ and D → A′. While this matching is valid in the context of matching

the two subgraphs, if we apply this mapping to the connection matrices we find this

match is invalid. Consider the connection matrices before the match (only the first

column is shown):

E E ′

Č112 =


0 . . .

1 . . .

0 . . .

0 . . .


A

B

C

D

Č212 =


0 . . .

1 . . .

0 . . .

0 . . .


A′

B′

C ′

D′

Now we permute C112 using the alignment given above:

E

C̊112 =


0 . . .

0 . . .

1 . . .

0 . . .


A

B

C

D

Clearly, this alignment is invalid if we want to form a model over the connection

matrices. Only matches that align B → B′ are valid for the connection matrices as

well as subgraphs.
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Figure 5.3: An example of subgraph and connection matrix placement inside a
padded sample graph adjacency matrix.

To force the matching algorithm to always return an alignment that considers

the connection matrices we adjust the values on some edges as follows. For each

subgraph, we add a small weight to the edges of a vertex that has cut connections

recorded in the subgraph’s connection matrices. This forces the best match between

two subgraphs to take into consideration the way they connect to other subgraphs.

Using the information we have produced about the number of subgraph clusters

we can pad the sample graph adjacency matrices one final time. Each sample graph

is expanded up to the maximum number of clusters plus additional room if a sample

graph contains two or more subgraphs from the same cluster. Let us denote this

number m. For example, if there are 10 clusters identified and one sample graph

contains two subgraphs from the same cluster then this step will expand all the

sample graph adjacency matrices to accommodate m = 11 subgraphs. The relevant

subgraph for each cluster is placed in one of these positions (if that sample graph

contained a subgraph from that cluster). The connection matrices corresponding

to the subgraphs are then placed. This representation results in a large amount of

padding however using a sparse matrix representation this is easily accommodated.

These fully padded sample graph adjacency matrices are denoted S̊′k and are nm×
nm in size. We now present some examples to illustrate this padding procedure.

Figure 5.3(a) shows where the subgraphs and connection matrices are placed to
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Figure 5.4: An example of subgraph and connection matrix placement highlight-
ing the treatment of a sample graph containing multiple subgraphs from the same
cluster.

make S̊′k in the case of 4 clusters with subgraphs from cluster 4 appearing twice in

one or more sample graphs. Since the graphs are undirected, only the connection

matrices in the upper triangle are shown for clarity.

Figure 5.3(b) shows how a sample graph S1 (̊S′1) is rebuilt into the previous

examples cluster arrangement. It contains 3 subgraph adjacency matrices, F̊11 from

cluster 4, F̊12 from cluster 1 and F̊13 from cluster 2. Three connection matrices

describe how the subgraphs are connected. The spaces in the matrix not occupied

by subgraphs or connection matrices are filled with 0, the n× n matrix of zeros.

Figure 5.4 shows a sample graph that contains 4 subgraph adjacency matrices,

F̊11 and F̊14 from cluster 4, F̊12 from cluster 1 and F̊13 from cluster 3. This example

highlights how a sample graph containing multiple subgraphs from the same cluster

is handled.

Constructing the Models

In this section we describe how the models are created for both the clusters con-

tained in a sample graph and the connections between subgraphs. The distribution

of subgraphs in a cluster is easily defined and described in the next section. In figure

5.5 an overview of the models required for the parts-based approach is given. We

describe the models (a) and (c) in this section and defer discussion of model (b)

until the next section due to its simplicity.
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Due to the clustering performed on the subgraphs we can now speak about the

connection matrices in terms of connections between clusters instead of connections

between subgraphs. We can also think of each sample graph being composed of a

set of clusters rather than a set of subgraphs.

To create the model of how subgraphs are connected (model (c) in figure 5.5),

we construct a long vector sk describing all the connection matrices present for

a sample graph Sk. The placement of each connection matrix in the long vector

sk is of great importance if we want each component of sk to represent the same

connection over the whole set of sample graphs. To accomplish this we divide the

long vector into sections. Each section represents the connections between two

subgraphs from a specific pair of clusters. We define a function ξ(a, b) that returns

the section of the long vector i : j (from index i to index j) for a given pair of

clusters a and b.

ξ : (a, b)→ i : j (5.6)

where a ≤ b (since the graphs are undirected we only need to record the con-

nections between two clusters in one direction).

We can then build sk for each Sk using the connection matrix between each pair

of clusters (a, b) where a ≤ b:

sk(ξ(a, b)) =

vec(C̊kij) if ∃Fki, Fkj.i 6= j ∧ ψ(Fki) = a ∧ ψ(Fkj) = b

vec(0) otherwise
(5.7)

In other words, for every section ξ(a, b) of the long vector sk we either fill it

with zeros (if there is no pair of subgraphs from cluster a and b) or a connection

matrix (if a pair of subgraphs from cluster a and b exists).

Therefore, each sk stores connections between all possible cluster pairs even

though only a few cluster to cluster connections will probably be needed. This

ensures that in each long vector all cluster to cluster connections are taken into

account when constructing this part of the generative model.

If a sample graph contains a cluster a twice or more, then we will have multi-

ple connection matrices between the same cluster pair. For example, in figure 5.4
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Modelled using a Gibbs Sampler. A binary state (a cluster configuration) is 
computed for each sample graph determining which clusters are present. The 
Gibbs Sampler produces a new cluster configuration by moving through a series 
of cluster configurations probabilistically.

1      1      1      0

Modelled using a frequency selection method.

Subgraphs in cluster Model

Modelled using a normal distribution. The connection matrices for each sample 
graph are stacked into a long vector. This vector has room for all possible cluster 
to cluster connections even though most will be unused on a single sample graph. 
A normal distribution is then constructed over this vector space.

s1 s3

p(     ) = 4
1

p(     ) = 4
3

p(     ) = 1

(c) Constructing the model of the connection matrices

(b) Constructing the model of subgraphs in each cluster

(a) Constructing the model of which set of clusters is present in each sample graph

1      1      1      0

1      1      1      1

Figure 5.5: An overview of the models required for the parts-based approach.



CHAPTER 5. PARTS BASED GENERATIVE MODELS FOR GRAPHS 108

subgraphs F11 and F14 were both from cluster 4. Therefore, connection matrices

C̊131 and C̊134 both represented connections between cluster 3 and cluster 4. We

choose to deal with this by merging multiple connection matrices between the same

cluster pair into a single connection matrix. This single merged connection matrix

may then be placed in the long vector as described earlier.

The merging process is relatively simple. Let us denote the number of connec-

tion matrices (in a single sample graph) between two clusters a and b as zab. We then

merge them by dividing each connection matrix by zab and summing the resulting

matrices. In terms of the example before, a = 3, b = 4 so zab = z34 = 2 meaning

the connection matrix between cluster 3 and cluster 4 would be 1
2
C̊131 + 1

2
C̊134.

However, this is not an ideal solution. We must make the assumption that mul-

tiple occurrences of subgraphs from the same cluster are connected in the same

way. If this is not the case then merging is clearly not a good idea. Secondly, if

we generate a graph that requires x multiple connection matrices between the same

cluster then we must generate x long vectors. Clearly any additional long vectors

generated will not take the co-occurrence of connections in the other long vectors

into account. We discuss possible solutions to this problem in the section on future

work.

With the long vectors {s1, s2, ..., s|S|} to hand we proceed to construct a gen-

erative model over this vector set. We compute the mean µ and covariance Σ of

the long vectors. With the covariance matrix to hand we perform an eigendecom-

position resulting in two matrices, Φ which contains the eigenvectors and Λ which

contains the eigenvalues. We now have the information needed about the distribu-

tion of the connections between clusters in the sample graphs.

To model the distribution of which set of clusters are contained in each sam-

ple graph (model (a) in figure 5.5) we use a Gibbs Sampler. A Gibbs Sampler

allows us to approximate sampling from a complex join probability distribution

p(x1, x2, ..., xj) by sampling from a long sequence of conditionals. If we let [x
(0)
1 , ...,

x
(0)
j ] be a set of arbitrary initial values, we first sample x(1)1 from the conditional

distribution p(x1|x(0)2 , ..., x
(0)
j ), then sample x(1)2 from the conditional distribution

p(x2|x(1)1 , x
(0)
3 , ..., x

(0)
j ) and so on until we sample x(1)j from p(xj|x(1)1 , , ..., x

(1)
j−1).

After repeating this for r iterations, we sample [x
(r)
1 , ..., x

(r)
j ]. If r is large enough,

then [x
(r)
1 , ..., x

(r)
j ] can be viewed as a sample from the original joint probability
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distribution p(x1, x2, ..., xj).

To prepare the Gibbs Sampler for use we must setup a number of binary states

that indicate which sample graph contains subgraphs from which cluster. Let us

term this a cluster configuration. This information is stored in a matrix U that is

|S| ×m in size. Each row u(k) indexes a sample graph k and its elements describe

which clusters are contained in that sample graph.

U(k, c) =

1 if ∃Fki ∈ Fk|ψ(Fki) = c

0 otherwise
(5.8)

For example, if a sample graph S1 contains a subgraph from cluster 3 then

U(1, 3) = 1, if this is not the case then U(1, 3) = 0. Again, a complication arises

in the case of multiple subgraphs from the same cluster appearing in a single sam-

ple graph. Since we require a binary vector, we cannot indicate the multiplicity of

such subgraphs directly in the cluster configuration. For example, if S1 has two

subgraphs from cluster 4 then we cannot set U(1, 4) = 2. Therefore, we use a sin-

gle bit to represent the appearance of every possible cluster. In other words, if two

subgraphs from the same cluster appear in one sample graph then we must allow

two bits to represent this. To illustrate this we give the following table of cluster

configurations (all subgraphs from other clusters are always present, only cluster 4

varies).

Cluster: 1 2 3 4 4

Zero subgraphs from cluster 4: 1 1 1 0 0

One subgraphs from cluster 4: 1 1 1 1 0

Two subgraphs from cluster 4: 1 1 1 1 1

5.2.2 Sampling and Reconstruction

To generate a new graph we must sample from three distributions. Figure 5.6 pro-

vides an overview of this sampling process. First we must find a cluster configura-

tion using the Gibbs Sampler (model (a) in figure 5.5). For each cluster present in

the new graph we choose a subgraph from the distribution of subgraphs present in

each cluster (model (b)). Lastly, we generate the connections between all pairs of

clusters in the cluster configuration (model (c)).
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Generate a cluster configuration using the 
Gibbs Sampler [model (a)].

Select a subgraph to represent each cluster 
in the new graph [model (b)].

Generate the necessary connections 
between the clusters chosen [model (c)].

Generate a complete set of connections (i.e. 
between all cluster-cluster pairs) then select the few 
we need and reform into connection matrices. A 
thresholding step may also be necessary.

Assemble all generated components.

All zeros 
after threshold

gT

Figure 5.6: An overview of the process of sampling from the models to generate a
new graph. The models given in brackets relate to those described in figure 5.5.

The Gibbs Sampler functions as follows. First we initialize the current state s to

a randomly selected row of U. On each iteration we create two new states (sa and

sb) by flipping or not flipping a bit at index v. We then find the probability of each

of these states conditionally on the other values of the components of the current

state vector. This is done using a sum of exponentiated Hamming distances and

then applying a normalization. A single iteration is defined as repeating this until a

new value has been sampled for each component exactly once. The component for

which a new value should be sampled is chosen sequentially:

v ← mod(v,m) + 1 (5.9)

The sum of exponentiated Hamming distances for states sa and sb are computed

as such:

Hsa =

|S|∑
k=1

e−αh(sa,u(k)) (5.10)

Hsb =

|S|∑
k=1

e−αh(sb,u(k)) (5.11)

where h(a, b) is the Hamming distance between two binary states a and b and α

is a tunable parameter set by hand. The two Hamming sums are normalized to find

the probabilities of moving to sa or sb:
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Psa =
Hsa

Hsa +Hsb

(5.12)

Psb =
Hsb

Hsa +Hsb

(5.13)

The state sa is selected (s← sa) with probability Psa and the state sb is selected

(s← sb) with probability Psb .

After 100 iterations across all components of the vector, we take the current state

which provides the configuration of clusters that will be used in our new graph.

With the cluster configuration of the new graph Gk decided we make a new

adjacency matrix Gk of size nm × nm that will represent the newly generated

graph. Next we must choose which subgraph to use for each cluster and generate the

connections between them. Choosing the subgraph to be used for each cluster that

appears in the new graph is a relatively simple process. We use a frequency selection

method. For example if there is one cluster that contains 3 identical subgraphs then

that subgraph is 3 times more likely to be selected for that cluster in the new graph

than a subgraph that only appears once. As before, we let Xc be the set of subgraphs

from cluster c.

Xc = {∀Fki ∈ F|ψ(Fki) = c} (5.14)

Therefore if we uniformly select a subgraph from Xc, it will respect the proba-

bility with which that subgraph appears in the cluster.

To generate the connection matrices we generate a new set of connections be-

tween all cluster pairs and then select the connections that are required for our new

graph. The generated set of connections between all cluster pairs is denoted gk and

computed using the distribution of vectors {s1, s2, ..., s|S|}:

gk = µ + Φb (5.15)

where b is a parameter vector created by sampling from the normal distribution

with zero mean and variance given by the diagonal elements in Λ. It’s components

are sampled as follows:

b(i) ∼ N (0,Λ(i, i)) (5.16)
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We select slices of gk to be reshaped back into matrices and used as connection

matrices for the new graph. If a connection matrix Cg between cluster a and b is

required then it is retrieved from gk as follows:

Cg = devec(gk(ξ(a, b))) (5.17)

If the Gibbs sampler produces a cluster configuration containing multiple in-

stances of a cluster then we will require multiple samples of the connections be-

tween those cluster pairs. To do this we draw as many long vectors from the distri-

bution as required and take only the connections between the required cluster pair.

As discussed earlier, this procedure results in the co-occurrence of connections in

additional connection matrices being ignored as each long vector is sampled inde-

pendently.

Our new graph is almost complete now with the cluster configuration decided,

subgraphs to represent those clusters chosen and the connections between those

subgraphs generated. All that remains is to finalize the connection matrices of the

new graph. Due to the continuous nature of the normal distribution some noise in

the connections might have been introduced in generating gk. If we require discrete

edges then we must remove the noise by thresholding the values in every connection

matrix such that an edge is only recorded if it is above a certain threshold. Let us

denote a thresholded connection matrix C̃g:

C̃g(u, v) =

1 if Cg(u, v) > β

0 otherwise
(5.18)

The value of β can be determined by the average value of the elements in the

long vectors {s1, s2, ..., s|S|}. In the case of graphs with weighted edges it can still

be a good idea to remove edges with very low weight that represent noise and do

not contribute to graph structure. The thresholded connection matrix in this case

would be:

C̃g(u, v) =

Cg(u, v) if Cg(u, v) > β

0 otherwise
(5.19)
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5.3 Experimental Results

We show the utility of our approach by applying it to graphs constructed from point

sets. Two data sets are used in this section: the first set is constructed from syntheti-

cally generated point sets while the second set uses points extracted from real-world

images. We use point sets since it provides a way to visualize both sample and gen-

erated graphs.

To perform this visualization we use edge weights to compute the matrix D

which contains the distances between all pairs of vertices. The drawing algorithm

can then proceed in one of two ways. One approach is to use multi-dimensional

scaling to embed the vertices in a space such that the distance between pairs of

vertices is maintained. Although this does not always give an ideal drawing of a

graph, it does ensure that the embeddings of sample graphs and generated graphs

are similar and therefore provides a way to assess the intricacies of a generated

graph.

If the graphs are more rigid then we use an optimization approach to draw the

graphs. The process starts from a set of points that represent the vertices of the

graph. We then move each point in turn in the direction that minimizes the squared

error in the distance between the values in D and the current distances between

points in the point set. We only move the point part of the way towards its mini-

mum position to prevent early convergence to a sub-optimal solution. After many

iterations the distances between the points in the point set will reflet those in D as

accurately as possible and the drawing will be complete.

5.3.1 Synthetic Data

Our synthetic data is constructed from 5 different small point sets x1, ..., x5 each

containing 15 points. The point sets x1, ..., x5 are arranged in a 2D space to make the

full point set Xk. Each point set xi will be represented by a cluster in the algorithm

and the way they are arranged will be represented by the connection matrices. To

provide some work for the matching step in the algorithm we apply a small amount

of noise to the points in each Xk. We compute the Gabriel graph Sk for each point

set Xk from which the algorithm commences. The weights on the edges computed

by the Gabriel step are set to the distance between the two vertices they connect.
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The partitioning of each graph is accomplished using Normalized Cut. The middle

row in figure 5.7 shows the Gabriel graphs computed from point sets X1, ...X4. The

position of each xi in the point set Xk in shown above each graph. The bottom row

shows the MDS embedding for each graph Sk. Note that the embeddings may be

missing vertices or edges due to the MDS projection when compared to the Gabriel

graphs above. However, the connections between the subgraphs are reasonably

clear.

Figure 5.8 shows graphs generated using this data set which are drawn using

the MDS embedding approach. The cluster configuration produced by the Gibbs

sampler is given above every generated graph. Graphs G1, G2 and G3 all use the

cluster configuration of S3 and S4; graphs G4 and G5 use the configuration of S2

and G6 uses the configuration of S1. While it is difficult to see due to the MDS

drawing method, the majority of subgraphs used to represent each cluster display

different slightly different structure due to the noise added to the sample point sets.

The connections between clusters have the largest impact on the structure of the

graph, in all graphs except G5 the connections remain between a single cluster pair,

while in G5 all five clusters are connected by the bottom subgraph.

GraphG1 provides a good example of how the connections in the sample graphs

can be statistically mixed. Notice that the connections on the left of the subgraph

indicated by x5 are identical to those in S3 and the connections on the right are

identical to those in S4. Also observe that the connections between x2 and x4 are

different to those in any Sk and are in fact a combination of the connections between

x2 and x4 in S3 and S4. Similar connection combinations can be seen in the other

generated graphs but are sometimes hidden due to the drawing method.

We mentioned earlier the role of the thresholding step and how it is used to

remove noise that has been introduced into the generated connections. In figure 5.9

we describe the role of the threshold parameter on a generated graph by showing

the MDS drawing of the graph for three different threshold values. In figure 5.9(a)

the threshold is set too low and too many edges that are noise are allowed to make it

into the final graph. In figure 5.9(b) the parameter is set correctly by calculating the

average value of the elements in the long vectors. Finally, in figure 5.9 the value is

set too high and a crucial connection determining graph structure has been removed.
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x1 . . . . . . . . . x2
...

...
x3 . . . . . . . . . x4

x1 . . . . . . . . . x2
...

...
x3 . . . x5 . . . x4

S1 S2

x1 . . . x5 . . . x2
...

...
x3 . . . . . . . . . x4

x1 . . . x5 . . . x2
...

...
x3 . . . . . . . . . x4

S3 S4

Figure 5.7: Synthetic graphs constructed for the sample set. For each graph the
cluster configuration is given in the top row, the middle row gives the Gabriel graph
computed from each point set and the bottom row shows the MDS embedding of
the graph above it.
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G1

x1 . . . x5 . . . x2
...

...
x3 . . . . . . . . . x4

G2

x1 . . . x5 . . . x2
...

...
x3 . . . . . . . . . x4

G3

x1 . . . x5 . . . x2
...

...
x3 . . . . . . . . . x4

G4

x1 . . . . . . . . . x2
...

...
x3 . . . x5 . . . x4

G5

x1 . . . . . . . . . x2
...

...
x3 . . . x5 . . . x4

G6

x1 . . . . . . . . . x2
...

...
x3 . . . . . . . . . x4

Figure 5.8: Graphs generated using the synthetic data set drawn using MDS embed-
ding.
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(a) (b) (c)

Figure 5.9: Various thresholds of the connections between subgraphs for a gener-
ated graph.

(a) (b)

Figure 5.10: The motion capture process; the object is augmented with white circles
and a simple thresholding step is applied to the image (a). The center of each white
dot is found and converted to a coordinate. The Gabriel graph of the coordinate set
is computed (b).

5.3.2 Real-world Data

To show the utility of our approach on real world data we use images of articulated

objects. These objects have multiple joints about which their various parts can move

and are therefore an ideal choice for our approach. Our approach will partition the

full object into its various parts and then model the way the parts are connected.

We acquire point sets from the real world images through a motion capture pre-

processing step. Although we could use a corner/edge detection algorithm to find

the features that identify the parts, we choose to use the more robust process of mo-

tion capture. Each moving part is augmented with a number of small white circles

that will be found in the preprocessing stage and converted into points. Figure 5.10

shows an example of the motion capture process.

Since the points are fixed on the object in question it is very simple and quick
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Graph A Graph B Graph C Graph D

Figure 5.11: Four of the eighteen graphs used for the real-world sample set: the top
row shows the Gabriel graphs computed from each sample image and the bottom
row shows the optimization based drawing of the graph above it.

Graph G1 Graph G2 Graph G3 Graph G4

Figure 5.12: Graphs generated from the articulated object data set drawn using the
optimization based approach.
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A

B

C

D

G1

G2

G4

G3

Figure 5.13: A PCA projection of the graphs in the sample set. Four generated
graphs are also shown. Sample graphs are indicated by a picture of the Gabriel input
graph. Graphs shown in figure 5.11 and figure 5.12 are labeled correspondingly on
the plot.
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to label the points by hand. Not only does this mean no alignment needs to be

performed on this data but we can also partition the graphs based on our knowledge

of which point is in which subgraph.

Due to the more rigid graph structures present we employ the optimization draw-

ing method described in the introduction of this section. The data set for this ex-

periment consists of 18 images of an object in different articulations. The Gabriel

graphs constructed for 4 of these images are shown on the top row of figure 5.11.

The bottom row shows the optimization based drawing of the graph above it. Figure

5.12 shows graphs that were generated using this data set. The graphs do not appear

in the sample set of graphs (i.e. they truly are new graphs) however they are similar

to some graphs in the sample set.

Figure 5.13 shows a PCA projection of the graphs in the sample set and the

generated graphs in figure 5.12. Each sample graph is depicted by its Gabriel graph

and the generated graphs are marked with crosses. The graphs shown in figure 5.11

and 5.12 are labeled correspondingly in the PCA plot. Similar graphs are grouped

quite tightly as is the case of the graphs near C on the plot. The variation caused

by the bottom articulation of the model does not affect the graph as strongly as the

upper two articulations. This is why the graphs grouped around C have varying

bottom articulations but the top two articulations are the same. Similar trends can

be observed for other groups of graphs in the sample set although the groups near

B and D are not as easily seen.

5.4 Conclusions

In this chapter we have shown how a parts-based generative model for graph struc-

ture may be constructed. This model is fully generative in the sense that we may

sample from the model to generate new examples. The key idea underpinning the

approach is that the sample graphs can be well understood in terms of the substruc-

tures they contain. Given an algorithm to produce these substructures, we can view

each sample graph as a set of subgraphs and connections between subgraphs. With

the decomposition of the sample graphs to hand our algorithm can commence.

The first step is to find subgraphs that represent similar substructures; this is

accomplished through a clustering step. From this we obtain a reference graph for
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each cluster and we can use this to solve correspondence problems on both the sub-

graphs and the connections between subgraphs. More importantly, this clustering

step allows us to view the connections between subgraphs as connections between

clusters which is essential for building the model.

To construct the model we fit three distributions; one over the clusters present in

each sample graph, a second over the subgraphs present in each cluster and a third

over the connections between clusters. The first is modeled using a Gibbs sampler,

the second is modeled using a simple frequency selection method and for the third

we transform the connection matrices for each sample graph into a long vector and

then construct a normal distribution over this vector space.

Finally, to generate new examples from the model we may sample from the three

distributions defined above and then combine the components produced to construct

a new graph.

To show the utility of our approach we evaluated it on both synthetically gener-

ated data and real-world data. Both sets of data take the form of point sets since this

allows us to easily visualize the generated graphs. The synthetic data is constructed

by producing a set of points and then constructing a Gabriel graph over the point set.

We showed that a new graph could be generated from this data set that combined

aspects of the sample graphs. The real-world data set was constructed from images

of articulated objects. Images were taken of an object in a number of positions and

transformed into Gabriel graphs through a motion capture step. With the distribu-

tions defined over the data, we were able to sample new graphs from the model and

visualize their structure using a custom optimization-based drawing step. Further-

more, when the sample and generated graphs are plotted using a PCA projection we

show strong correlations between location on the plot and graph structure.

For the approach to work the subgraphs representing substructures of the sam-

ple graphs must be reasonably structurally similar or the clustering stage will fail

to capture the variation in the set and over partition the data. The same is true

for the connections between substructures, for the model of connections between

subgraphs to produce meaningful results the substructures from a particular cluster

should all connect in a similar way. Therefore, this approach is most effective on

data types that lend themselves to a partitioning process, namely chemical struc-

tures, point sets of articulated objects and point sets of scenes.
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5.4.1 Future Work

One way to extend this work would be by applying the approach to a more extensive

data set. It is difficult to suggest such a data set however, due to the problems

of visualizing the generated graphs. Graphs of scenes are an interesting domain

as they fit the decomposition problem very well, however it is not clear how such

generated graphs could be visualized. We performed some experiments with images

depicting arrangements of objects but encountered some problems in constructing

sample graphs that were robust to variation in the corner extraction process. Using

very simple objects we did achieve some success but even then the only tool we had

to display the results was to draw the graphs using an MDS embedding which failed

to convey the complex structure of the graphs.

This work could also benefit from a more careful examination of the method of

generating connections between clusters. When considering graphs with no weights

on the edges we are modeling discrete data with a continuous distribution. A better

model could be to associate a probability with the existence of each entry in the con-

nection matrix between a pair of clusters. This could be modeled using a Bernoulli

distribution as is described in Torsello’s work [102].

The existence of multiple subgraphs from the same cluster appearing in a single

sample graph significantly complicates the model. Currently, the multiple connec-

tion matrices between a cluster pair are merged so they may all be stored in the same

space in the long vectors. If a generated graph requires multiple samples of a con-

nection matrix between a cluster pair, then multiple long vectors must be sampled

and these ignore the co-occurrence of connections. It is not clear that this is the best

way to handle the situation. For example, a better approach might be to ignore the

additional connections or to allow room in the long vectors to store all connections

between a pair of clusters.

Neither of these two approaches would be ideal because of our underlying as-

sumption that connections between a cluster pair should always be similar. How-

ever, this is rarely true in real world data. For example, multiple occurrences of two

objects in a scene may be linked very differently in each sample. In images from the

COIL data set where parts of the object remain invariant, the connections between

them do not. So the solution to this problem is to remove this underlying assump-

tion. This means extending the model to handle different types of connections be-
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tween each cluster pair. One approach could be to identify different connections of

a cluster pair through a second clustering step and then construct a mixture model

that accounts for the different modes of the distribution of the connections. This

would result in a model that was more complex but also had more representational

power.



CHAPTER 5. PARTS BASED GENERATIVE MODELS FOR GRAPHS 124

5.5 Symbols

S A set of graphs.

Sk A graph from the set S.

Sk An adjacency matrix representation of a graph Sk. The padded

matrix is Šk and the aligned matrix is S̊k.

F The set of all subgraphs of the graphs in S .

Fk The set of subgraphs of graph Sk.

Fki Subgraph i of graph Sk.

Fki An adjacency matrix representation of subgraph Fki. The

padded matrix is F̌ki and the aligned matrix is F̊ki.

Ckij A matrix storing the cut connections between subgraph Fki

and Fkj . The padded matrix is Čkij and the aligned matrix is

C̊kij .

n The size of the largest subgraph in F .

m The size of a cluster configuration.

ψ A function that maps a subgraph to a cluster.

Rc The reference subgraph for cluster c.

Xc The set of subgraphs belonging to cluster c.

M(Fki, Flj) The matching matrix that aligns Flj to Fki.

M′(Fki) The matching matrix that aligns Fki to its cluster reference.

sk A vector storing the connection matrices for a sample graph

Sk.

ξ A function that maps a cluster pair to an index range in a vec-

tor.

zab The largest number of connection matrices between a cluster

pair a, b displayed in a sample graph Sk.

Λ,Φ The set of eigenvalues and eigenvectors resulting from an

eigendecomposition of the covariance matrix Σ.

b A parameter vector of a multivariate normal distribution.

U The matrix of cluster configurations for use with the Gibbs

Sampler.

s, sa, sb States in the Gibbs Sampler.
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h(., .) Hamming distance.

Hs The sum of Hamming distances from state s to all cluster con-

figurations in U.

Ps The probability of choosing state s in the Gibbs Sampler.

Gk A generated graph.

Gk A generated adjacency matrix.

gk A generated vector of connection matrices.

Cg A generated connection matrix.

C̃g A thresholded generated connection matrix.



Chapter6
Generative Models for Chemical

Structures

6.1 Introduction

The field of chemoinformatics[69, 51] is a relatively new discipline that studies the

application of computational methods to chemistry. The scope of the field is wide

ranging from providing databases of molecules that may be searched by molecular

structure, to the simulation of molecular interactions which can help to predict how

two molecules will react. From the beginning medicinal chemists have been using

tools from this domain to help them design more effective drugs and better under-

stand their properties. A combination of a better understanding of biochemistry and

advances in chemoinformatics has moved the process of drug discovery away from

refinements of natural products and serendipitious discoveries and towards rational

drug design.

The recent advances in mapping the human genome have opened up a whole

series of new drug targets[32, 35]. It is estimated[29] that as many as 25 000 dif-

ferent proteins will be identified and that many of these will be suitable for binding

drug-like molecules to and therefore represent new drug targets. This explosion in

the number of new targets calls for new ways to proceed with the process of drug

discovery and exploration of chemical space. One such method that is rapidly being

adopted is that of fragment based drug discovery which seeks to simplify the drug

discovery process by focusing on small molecules termed fragments and combina-

126
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tions of these fragments.

In this section we will detail a method of generating chemical structures that

offers medicinal chemists another way to explore the chemical space near a set of

chemically similar molecules. This type of exploration of the chemical space often

occurs in drug discovery. Given a set of drugs that perform well against a target, we

will show how molecules can be generated that have similar structural properties

to the initial set. Given that the effectiveness of a drug is very dependent on its

structure, we hope that the molecules we generate will also be effective against the

target.

In the remainder of this introduction we will first offer an explanation of the drug

discovery process and where this approach would fit in. Secondly, we will discuss

various approaches to the problem of generating chemical structure and finally, we

present our contribution.

6.1.1 Overview of Drug Discovery

Today, drug discovery[33, 67] often begins by trying to identify the biological

mechanism that gives rise to a disease or infection. For example, one can find

the metabolic pathways that cause the problematic state to occur and either inhibit

or aid one of the links in this pathway. This often takes the form of creating a

molecule, or a ligand, that is designed to interact with a specific receptor.

The receptor will generally be a small volume of space between the folds of a

protein that is involved in the metabolic pathway. This volume, termed the active

site, is the space in which the ligand will interact with the protein. The first model

of this interaction was proposed by Emil Fischer in 1894 and was termed the lock

and key model. In this model the ligand is the key and the lock is the active site in

the protein. The ligand must be specific enough to only interact with the intended

receptor and not interfere with other receptors. In other words, the main property of

a molecule in determining its affinity for an active site is its structure. Although this

model has been superseded with the induced fit model the basics remain the same.

For a medicinal chemist to search for molecules that would be suitable to use

as ligands for a receptor, information about the structure of the receptor is required.

This structure can be found by performing X-ray crystallography on the receptor.

From this an inverse of the structure can be found and it is this volume that a ligand
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must fit into. A medicinal chemist would of course take many additional factors

into the design of a suitable ligand however, for the purposes of this work, we are

most interested in the structural constraints.

Ligands that successfully dock with the active site can be found by several

means. High throughput screening[53, 76] (HTS) involves testing thousands of dif-

ferent ligands against the receptor in controlled laboratory situations. An assay is

developed such that when a potential ligand is applied to it the effect that ligand has

on the receptor can be measured. This process is usually automated by laboratory

robotics and a pharmaceutical company with a large library of drug-like molecules

can screen a large number of molecules for activity against a receptor in little time.

Another possibility is to perform this screening virtually using a computer model

of the target receptor and a database of drug-like molecules. Methods to perform

these types of virtual screens were discussed in sections 2.2.2 and 2.2.4 of the lit-

erature review. Although these approaches can process molecules faster than their

real-world counterpart, they cannot take into account all the factors that real-world

experiments can. Generally the two procedures are used in tandem to perform an

initial very fast screen in silico and then a more comprehensive screen in vitro.

Once molecules that display high activity against a target have been found they are

counter screened against a set of reference targets to check for the specificity of the

molecule for the particular active site.

With several potential ligands identified (known as leads), the process of refine-

ment and elaboration begins. This is known as lead hopping and is highly iterative.

Ligands are constantly refined to improve their affinity for the receptor and their

pharmacological properties1. Each “hop” generally involves modifying or replac-

ing one of the ligand’s functional groups. Functional groups are small groups of

atoms within a molecule that are responsible for how it reacts. However, it is not

clear how to perform this enumeration of chemical structures in an efficient way.

This is due to the fact that, for a given group of structurally similar molecules, there

exists many more molecules that have similar structural properties. It is the ques-

tion of how to explore this area of chemical space[83, 71] in a meaningful way and

extract ligands that have high affinity for the active site in question that our research

should help answer.
1For example, the ADME (absorption, distribution, metabolism and excretion) method for deter-

mining the suitability of drugs for humans
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Fragment Based Approaches

Traditionally, molecules screened through HTS are of approximately the same size

as the drugs they may eventually become. The idea behind fragment based ap-

proaches [89] is the screening and use of small molecules termed fragments. This

has a number of beneficial effects which we describe below.

First, if a fragment is found to be active against a target then it provides a good

starting foundation for designing a drug. This is due to an upper limit on the weight

of a molecule for it to be effective as an orally administered drug. Typically any

molecule that is found to be active against a target will need to be altered to be

made suitable for use as a drug, and generally these alterations involve increasing

the molecular weight. Therefore, if the molecular weight of a drug candidate is near

this upper limit there is less scope for refinement than there would be if the drug

candidate had a lower molecular weight. In other words, it is a fragment’s high

binding affinity to low molecular weight ratio that is of great importance.

Second, if two fragments are found to have high affinity for a target but are struc-

turally different then it may be that the active site has a complex geometry allowing

two fragments to bind simultaneously. Since there is only a limited amount of space

in the active site, we want to exploit that space as best as possible. This means find-

ing molecules that occupy that space effectively, however, with large molecules

there is a low chance of finding an exact fit. On the other hand, small fragments

have a better chance of exploiting the geometric properties of the active site. If we

discover two different regions of binding then this can be used by scaffolding two

fragments together into a larger fragment that binds more successfully.

Third, the use of fragment-based screening allows chemical space to be ex-

plored in a far more efficient manner than traditional methods. Erlanson and Jahnke

(Chapter 1 [57]) provide a simple example illustrating this. Given two sets of com-

pounds, each containing 1000 fragments, we can use a linker to construct the set of

all binary combinations. This set would contain 1000000 fragments which would

be difficult to synthesis and screen. On the other hand, if we select only the 5 best

fragments from each set then we have 1000 + 1000 + (5×5) fragments to synthesis

and screen which is far more manageable and we have almost covered the same

chemical diversity (for a specific target).

Due to these reasons, fragment based drug discovery has received much atten-
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tion and has already been successfully applied to a number of drug developments.

By making use of fragments in our approach we might also be able to capitalize on

some of the benefits they provide.

6.1.2 Discussion of Possible Approaches

In the mixing spectral representations for graphs and vectorial generative models

for graphs chapters we have observed the problem of a generated graph not being

quite correct with respect to the graph representation used. To recover a discrete

graph from the vectorial representations used we must make use of a “thresholding

step”. This problem is even more pronounced when we consider graphs with a high

order set of constraints governing what it means for a graph to be “correct”.

In our case we will be using graphs representing chemical structure and for these

to be valid they must fulfill a number of constraints that are derived from the laws

of chemistry. These include constraints on which atoms can bond to others and the

way in which this may be performed, permissible 3D conformations derived from

the rotation of bonds and electrostatic properties to name but a few. However, we

will be taking a simplified view of these constraints and will only consider chemical

correctness to entail that a simple valence model is satisfied. To facilitate describing

a generated graph before the “thresholding step” has taken place we will adopt the

term quasi-graph or quasi-molecule to mean an instance of a representation that

almost represents the chosen structure but does not meet all of the requirements.2

We will now detail some approaches to the problem of generating graphs that

satisfy a set of chemical constraints.

One approach is to extend our thresholding step from the previous work to al-

low us to map a generated quasi-molecule to the nearest correct molecule by, for

example, a series of edit steps. However, it would be very difficult to define such a

series of edit steps. Another alternative to mapping a quasi-molecule onto a correct

molecule would be to represent the molecules in a vector space. Then the distances

between two molecules could be found directly. However, ensuring that the gener-

ated molecules and a selection of molecules that we could map onto reside in the

same vector space is a challenging problem. Furthermore, we would also require

2For instance, if we have a graph with non-discrete edges but our choice of representation requires
discrete edges, then we could term such a graph a quasi-graph.
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an enumeration of the molecules near the generated quasi-molecules in that area of

chemical space and this is an expensive operation

If we modify the way we construct the model such that it is impossible to sam-

ple incorrect chemical structure then the approach, at least in principle, becomes

simpler. However, it is unclear how a distribution could be constructed in this fash-

ion. One possibility is to use a Gibbs Sampler to move probabilistically through

the space of chemical structures. Each step in the Gibbs sampler would move from

one valid chemical structure to another therefore ensuring that quasi-molecules can-

not be generated. However, the difficultly here is in encoding a complex relational

structure into a state and ensuring that only states representing correct chemical

structure can be generated.

Since molecules are highly constrained graphs they can be described in an

elegant string based representation. Such strings are known as SMILES strings

and were discussed in the literature review in section 2.2.1. Since a well-formed

SMILES string can only represent valid chemical structure the problem becomes

how to move between well-formed SMILES strings. One possibility would be to

define edit operations that could be applied to specific substrings inside the SMILES

strings. SMARTS patterns (which are basically extended regular expressions) could

be used to identify substrings that could be substituted with other substrings such

that the SMILES string as a whole still represented a valid chemical structure. How-

ever, assigning probabilities to these edit operations so that we could move through

chemical space in a meaningful way would be difficult.

Since molecules are highly decomposable, as discussed in the overview of frag-

ment based approaches, the parts based approach detailed in chapter 5 of this thesis

could be applicable. The segmentation step would decompose a molecule into its

functional groups and these would form the subgraphs that are used in the method.

If constraints were placed on how the set of clusters were selected and which con-

nections were possible in the connection matrices then it would be possible to only

generate valid chemical structure. However, encoding these constraints in the model

would be difficult.

Another possibility is to generate new molecules directly by using a reaction

based model[68, 6]. A pool of fragments representing the constituent parts of the

input set are computed and then new molecules can be created by reacting these
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together. If we compute the probability that a certain reactant appears in the input

set (or gives rise to a molecule that appears in the input set) then we can define a

distribution over the set of reactants. Using these as the input to a reaction simulator

would be a way to generate new molecules probabilistically. This method could be

used exclusively or could be part of the process of a more complex method.

For example, this could be a way to generate a set of valid chemical structures

that are similar to those in the input set. Then when a quasi-molecule is produced

it could be mapped onto a molecule generated by a reaction based approach. One

of the main advantages of this method is that molecules generated in this way could

be more easily synthesized in the real world than those constructed without any

regard for the synthesis method. On the other hand, domain knowledge is required

to specify the reactants and the reactions.

6.1.3 Contribution

The approach we select is the first described briefly in the previous section; we work

in a vector space where points in this space represent both valid and invalid chemical

structures. After embedding the sample set in this vector space, we construct a

model that is capable of producing vectors describing almost, but not quite correct

chemical structures. Where we produce invalid chemical structures we map these to

valid chemical structures using a projection step. To obtain a set of valid chemical

structures suitable for use as the range of our projection function we enumerate part

of the chemical space in a controlled way. We will term the set of molecules we

begin with the input set, the set of molecules we enumerate the projection set and

the set of molecules we generate the generated set.

Therefore our approach consists of the following main steps:

• Construct the projection set.

• Sample from a distribution on the input set to generate new quasi-molecules.

• Map the generated quasi-molecules onto the molecules in the projection set

to obtain the final set of valid generated molecules.

The key idea is that although the set of projection molecules do not represent

a sample from the input distribution, they are similar enough such that if we se-
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lect a subset intelligently then those graphs in the subset are acceptable as samples.

On the other hand, the set of generated quasi-molecules we create are drawn from

the true distribution of input molecules. We therefore find the subset of projection

molecules that are suitable as samples by projecting a true sample from the input

distribution (a generated quasi-molecule) onto the most similar “correct” molecule

from the projection set. In this way we can approximate sampling the input distribu-

tion without the possibility of generating a graph describing a chemically incorrect

molecule.

We have chosen this method since we feel it has the most promise and fits in

best with the other topics pursued in this thesis. The approach is an amalgamation

of our earlier work on vectorial generative models for graphs and the initial step

from the parts based approach. In addition we introduce our method of enumerating

the chemical space around a small group of molecules and significantly extend our

previous thresholding step from a simple function with binary output to a complex

projection between quasi-molecules and valid molecules.

Furthermore, we believe this process will be of use to medicinal chemists look-

ing to explore chemical space for more potential drug candidates. After a suitably

large number of ligands have been identified that have all been shown to bind well

to a target receptor, these can be used to populate the input set of our approach. We

can then use our model to generate new molecules which are structurally similar to

the input set. Although we do not expect them to display all the pharmacological

properties those in the input set did, we do expect them to be similar in structure

and therefore perform well at interacting with the target receptor.

Of course, these interactions take place in 3D while our approach only considers

an abstract 2D structural representation. Therefore, the final stage of our approach

is to compute a 3D conformation for each generated 2D structure. Therefore, there

will be situations where a molecule which appears promising when represented as

a graph, is not so successful when represented in 3D.

However, the set of possible 3D structures that can be generated from a 2D

representation is heavily constrained by the laws of chemistry so this problem is not

as significant as it initially seems. Indeed, there are many examples in the literature

where 2D approaches successfully generate useful 3D structures[52, 31, 28]. For

the datasets we employ we have found that there are typically 50-150 low energy
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3D conformations possible for each generated structure.

6.1.4 Chapter Overview

We begin by detailing our method which is given in section 6.2. Next we provide

comprehensive results for two data sets in section 6.3. One data set targets the

COX2 protein and the second targets the EGFR protein. Finally, in section 6.4 we

give our concluding remarks and outline some future work that could be pursued in

this line of research. A table of the symbols used in this chapter is given in section

6.5 on page 194.

6.2 Method

We will begin this section by giving an overview of our method, commencing with

the first phase which consists of the construction of the projection set. Next, we will

discuss the second phase which is the alignment of the input set and the projection

set. The last phase is the construction of the model of the input set, which is a

Gaussian Mixture Model (GMM), and finally mapping samples from this model

to the graphs of the projection set. Please consult figure 6.1 for a diagrammatic

overview of the method.

At first glance it may seem an overwhelming task to enumerate the chemical

space near the molecules of the input set, but we can approximate an enumeration

of chemical space using statistical methods. In fact, if we adopt a fragment based

approach, we already have much of the information about the building blocks that

will allow us to enumerate molecules; the fragments of the input molecules consist-

ing of functional groups and carbon scaffolds. We will construct a model that allows

us to generate new correct chemical structures, according to our simplified model

of chemistry, which are composed of the fragments present in the input molecules.

We will discuss this step in detail in section 6.2.3. The methods used in this step are

similar to those in the initial step of the parts-based generative models approach.

We then turn our attention to the problem of performing alignment and comput-

ing the similarity of molecules. To model the distribution of the input molecules we

will require an alignment of only the molecules in the input set. This will allow us to
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Figure 6.1: An overview of our method for generating chemical structure.

construct a distribution over a vectorial representation of each molecule. Therefore,

generated quasi-molecules will be of a vectorial form.

On the other hand, to map generated quasi-molecules to the projection molecules

we will require a similarity measure. There are a number of ways to accomplish this

efficiently such as computing features like fingerprints (see section 2.2.1). How-

ever, this similarity measure must work with the vectorial form of the generated

quasi-molecules. Therefore, we require that the projection set and the generated

quasi-molecules will reside in the same space. The best solution to accomplish this

is to perform a global alignment over the input and projection sets. This will allow

the similarity of two molecules to be assessed directly in the vector space and also

provide us with a visualization method for all three sets.

Therefore, we will require a step that aligns not only the small number of

molecules in the input set but also the large number of molecules in the projec-

tion set. Due to the size of projection set this step must be as efficient as possible

while still producing high quality alignments. We solve this problem by performing

a hierarchial alignment on the input graphs and then “slotting in” each projection
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graph to the position in the alignment tree of the input graph that it is closest to.

The benefit of this is that a full pairwise alignment only needs to occur between the

graphs of the input set. This process, as well as other approaches considered, are

described in section 6.2.4.

Lastly, we discuss how we construct a Gaussian mixture model over the input

molecules and use this to sample new quasi-molecules. To estimate the parameters

of the GMM accurately we actually work in a reduced version of the vector space

and therefore new samples are produced in this space. However, we are then able

to move back to a common space to compute the mappings between the generated

quasi-molecules and the projection molecules. These steps are described in section

6.2.5.

We have spoken informally about the input set and the projection set in the

introduction, we will formalize these descriptions both here and in the following

sections. Our approach commences from a set of molecules. We construct a graph

describing the chemical structure for each molecule in the set. We then collect

these graphs into the set S. We call this the input set and it is the distribution of the

graphs in this set that we will sample to generate new chemical structures. We will

begin the discussion of our method with a description of how we represent graphs

of chemical structure (section 6.2.1). Following this we will explain our simplified

model of chemistry in section 6.2.2. Finally, beginning in section 6.2.3, we give a

detailed description of our approach.

6.2.1 Representation of Molecules

Beginning from a set of input graphs S we construct an adjacency matrix Sk for each

graph Sk ∈ S. In each graph, the vertex set represents the atoms of the molecule

and the edge set represents the bonds between atoms. The weight functions wV and

wE assign a weight to every atom and bond respectively.

Although we could assign a weight to an atom based on its atomic number

this would result in a large number of essentially arbitrary weights. This choice

of weight function was used by Wilson [121] however, as the work involved clas-

sification and not generation, the weight function could be tuned to improve the

performance of the classifier. There is no obvious tuning method that would work

with our generative approach.
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Instead, we make use of the fact that the properties of an atom are largely de-

pendent on its outer electron shell configuration, or in other words, the number of

valence electrons it possesses. Non-metal elements are divided, by valence config-

uration, into eight groups in the periodic table that give indications of how they will

behave. We exploit this for determining the weights to assign to atoms in our ma-

trix representation. We consider two atoms to be similar if they have similar valence

configurations.

We begin by assigning atoms from the nobel gas family a value of 1.0. Next we

set atoms with seven valence electrons to 0.8, six valence electrons to 0.7, and so

on down to atoms with one valence electron being assigned a weight of 0.2

Wilson [121] also encoded the end points of a bond into the weight function for

edges. For example, the bond H-O would have a different weight to H-N. However,

in our method this approach introduces unnecessary information to the graph repre-

sentation, and therefore a simpler solution will suffice. Edge weights are assigned

by bond strength: single bonds are assigned a weight of 0.5 and double bonds are

assigned a weight of 1.0.

6.2.2 Implicit Hydrogen Model

As mentioned earlier, graphs describing chemical structure are constrained by the

laws of chemistry. To reduce the complexity of the approach we adopt a very simple

model of chemistry which we will describe in this section.

Using our method, it is only possible to generate chemical structures that are

present in the projection set. Therefore, the sole point of failure to generate correct

chemical structures lies in the construction of the projection set. We have discussed

earlier, in the outline, that we will be using a fragmentation approach to segment

the input molecules and then reassemble them into new molecules. This process

is highly applicable to our evaluation domain as it explores the possible structural

configurations of the functional groups present in the input molecules. Further-

more, it does not require an experienced chemist to oversee the construction of the

projection set, as would be necessary with a reaction based method. However, the

approach can result in the construction of invalid chemical structures which can

occur in two ways. We describe these next.

The first type of problem occurs when considering the bond created by joining
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two fragments. It is quite likely that the atom to atom bond that connects the two

fragments will differ to the one that the fragments were previously involved in.

Therefore, it is unlikely that the valency requirements of the fragment complex will

be satisfied. Furthermore, the bond could involve charges on the connecting atoms

or possibly be a double or triple bond.

The second problem occurs as a property of a fully assembled molecule. Since

fragments are joined with no regard for the 3D structure of the molecule, when the

3D structure is considered for docking it is possible that fragments will overlap.

This will clearly result in an invalid chemical structure.

The first problem is solved to a degree by the model outlined below. On the

other hand, solving the second problem is more difficult. One approach would be

to generate 3D configurations of the molecule throughout the stages of its construc-

tion, at each stage checking that a valid 3D conformation can still be generated.

However, as our generative model is 2D in nature we ignore this 3D constraint and

simply record the molecule as a failure if no valid 3D conformation can be found3.

We should note however, that molecules containing invalid 3D structure usually

fall outside the distribution of input molecules and are therefore rarely selected as

generated molecules.

To solve the problem of constructing correct bonds between two fragments we

make use of the following observations.

• Since we are dealing with small drug-like organic molecules which very

rarely contain metals, almost all bonds should be covalent. Furthermore, or-

ganic compounds only consist of carbon atoms, hydrogen atoms and func-

tional groups.

• Our procedure for segmenting a molecule will not break aromatic structures,

double bonds or functional groups apart. The majority of bonds it breaks are

between two of the following atoms: carbon, oxygen and nitrogen.

From the first point we may assume that only covalent bonds will be present

in the input set and when joining two fragments, we only require the creation of

covalent bonds. Furthermore, from the second point we may assume only single

3Note that finding the 3D conformation of a generated molecule is not part of our generative
model, we consider it a postprocessing step.
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covalent bonds will be required and we will never join directly into the middle of

an aromatic structure or a functional group.

To simplify the joining process we use an implicit hydrogen model where charge

information must be included on the atoms or disregarded. This is in contrast to an

explicit hydrogen model, where all hydrogen atoms are included in the model and

can therefore be used to determine charge information on atoms.

In an implicit hydrogen model, the valence requirements on an atom can be

satisfied by the addition of an appropriate number of bonds to hydrogen atoms,

therefore resulting in correct chemical structure as least in terms of a simple valence

model. Furthermore, this removes the problems of joining two fragments when one

of the connecting atoms is an ion. Therefore, in our model, all hydrogen atoms

are made implicit from the start and charge information is removed. Our method

commences and new chemical structures are generated. When a 3D conformation

of a generated molecule is required for docking, the implicit hydrogen model is used

to augment the molecule with hydrogen atoms where needed to make the molecule

complete in terms of our simple valence model.

In addition to simplifying the joining procedure, there are many advantages to

choosing an implicit hydrogen model. Firstly, since the molecules consist of less

atoms the resulting model is less complex. Secondly, the alignment procedure will

give better results as the core structures which must be aligned are not influenced

by hydrogen atoms. Third, the removal of charge information does not significantly

distort the structure of a molecule, which is what we are primarily concerned with.

Finally, correct valence configurations and resulting charge information can always

be added to interesting molecules by a chemist if our model does not produce the

correct configuration. Molecules containing ions are actually quite rare in the data

sets we employ, none of the molecules in the COX2 data set contain ions and only

34% of molecules in the EGFR data set contain charge information. As a result we

often generate correct chemical structure by only using our simple model.

6.2.3 Constructing the Set of Projection Molecules

The aim of this part of the process is to construct the set of projection molecules

which we will project generated quasi-molecules onto. We term this set of molecules

the projection set with the symbol P since these graphs will form the range of the
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projection function that maps a generated quasi-molecule to a valid molecule. The

first step is to segment each graph in S into its constituent fragments: functional

groups, carbon scaffolds and aromatic rings. We then construct a model describing

the probability with which each fragment appears in the input graphs. This is sim-

ilar to a combination of the “clusters within each sample graph” and “frequency of

subgraphs within a cluster” distributions constructed in the parts-based generative

models but essentially a much simpler model. Finally, we use this model to con-

struct the graphs in the projection set by repeatedly combining fragments identified

in the first step with probabilities computed in the second step.

Segmenting the Input Molecules

Graph segmentation is a well known topic in pattern recognition and computer vi-

sion and there are many algorithms that perform well at the task. Perhaps the best

known algorithm is Shi & Malik’s Normalized Cut [100]. However, for the pur-

poses of segmenting chemical structures, a more specialized method is required

that considers the chemistry of the molecule as well as the structure of the graph.

As discussed earlier, drug discovery often proceeds by making small changes

to drug-like molecules by altering their functional groups, in an effort to make the

molecule bind more tightly to an active site or improve other desirable properties.

Since we will be building the set of projection molecules from the fragments iden-

tified in this step we would like the way we segment the molecules to reflect the

way a molecule may be improved by the method just described. In practice this

means that while segmenting molecules we want to produce clear functional groups

with no extra or missing atoms. A molecule cannot be completely decomposed into

functional groups and after they have been removed we are often left with one or

more carbon scaffolds. Since we want to assemble full, useful molecules in the

projection set we include the scaffolds in our fragment model.

The tool Chomp from the OEChem Toolkit [5] provides some of the functionality

we require. It takes a molecule file and a set of SMARTS rules that specify which

bonds should be broken and returns a set of fragments. The fragment set it returns

is simply a list of molecules with atoms on the other side of broken connections

replaced by stars. We use Bk to describe the set of fragments that are returned by

segmenting input graph Sk, .
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Figure 6.2: The fragments resulting from running Chomp on the molecule (a) are
shown in (b).

Figure 6.2 shows the result of applying Chomp to a molecule. As can be seen in

the figure, Chomp takes multiplicity into account and so, if two identical fragments

are identified, only one copy is returned. This is a problem for our application since

we require information on the frequency with which each fragment occurs. Given

a set of correspondences between the atoms in the fragments and the atoms in the

molecule we could use this to compute the frequencies indirectly but unfortunately

Chomp does not provide this facility.

To compute the frequencies of fragments that occur more than once in a molecule

we use a custom program built from the OEChem Toolkit. The program makes

use of the OESubSearch class from the toolkit which provides exact substruc-

ture search capabilities for molecules. We perform a substructure search for all the

fragments identified by Chomp and record the correspondences. Since smaller frag-

ments can sometimes be found within larger fragments we cannot simply infer the

frequencies from the correspondences. Instead we must match the functional groups

to the atoms in the molecule in order of the largest to the smallest and record which
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atoms in the molecule have been used in this stage. We then match the carbon only

fragments without using any atoms that have already been marked as participating

in a match. Again as smaller carbon only fragments can be subgraphs of larger car-

bon only fragments we must match in the order of largest to smallest. When all the

atoms in the molecule have been matched to atoms in the fragments we can then

compute the fragment frequencies using the matches. This procedure results in a

function ζ that maps a fragment Bki ∈ Bk to an integer n that specifies how many

times that fragment occurs in input molecule Sk.

ζ : Bki → n (6.1)

Building a Fragment Set

At this stage we know the fragments in each input molecule and the frequencies

with which they occur but only within that molecule. To construct our model we re-

quire the frequency of fragments occurring across the whole set of input molecules.

We accomplish this by matching the fragments identified in all input molecules to

find the set of unique fragments contained in the input molecules. Let us begin by

defining a set B that consists of all fragments found in the input graphs.

B =

|S|⋃
k=1

Bk (6.2)

We then compute a set F of unique fragments as follows:

F = unique(B) (6.3)

where the unique(.) operator returns the set of unique fragments present in the

argument. Therefore, the set F consists of a single occurrence of every fragment

found in the input molecules and each Fi ∈ F represents a unique fragment. How-

ever, we must retain the number of occurrences of each unique fragment to build our

statistical model. This is accomplished as such: for each fragment Fi ∈ F the set

Fij contains all instances of the fragment Fi in B where it occurs j or more times:

Fij = {∀X ∈ B, X = Fi, ζ(X) ≥ j} (6.4)
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We can then compute a distribution Pi(j) that gives the probability of a fragment

Fi occurring j times in a single input molecule. It is defined as such:

Pi(j) =
|Fij|
|S|

(6.5)

To compute the set of unique fragments F in equation 6.3 we require a method

of determining whether two graphs are isomorphic. We could use a general graph

matching algorithm such as Gold & Rangarajan [48] but, since we are dealing with

chemical structures and we are interested only in exact matches, we can use a more

application specific method. We turn to the OEChem Toolkit again and make use

of the OEExactGraphMatch function to compare two fragments. This function

is very fast since it compares molecules by their canonical smiles strings. The

work involved only requires constructing the canonical smiles strings for the two

molecules to be matched and then a string comparison.

Constructing the Projection Molecules

To construct a new molecule from the projection set Pk ∈ P we must first decide

which fragments it should be composed from. We find this by using the model

we constructed in the last section to take a sample of the distribution of fragments

present the input graphs. The result of this process is a fragment list describing the

fragments that should appear in our new molecule and with what multiplicity.

For every fragment Fi ∈ F and every multiplicity j we sample from Pi(j)

to determine if that fragment with that specific multiplicity will occur in our new

molecule. In practice this means generating a random uniform number in the inter-

val [0, 1); if it is less than the value of Pi(j) we add that fragment and multiplicity to

our fragment list. If we find that a fragment Fi should occur with multiplicity j and

k then we disregard the sample with the lower multiplicity. Note that the fragment

list only serves as a suggestion since it may not be possible to include all fragments

in the list due to a lack of available connection points.

To produce a new molecule from the fragment list we begin with a molecule

with no atoms in it i.e. an empty graph. We then repeatedly join a fragment from

the fragment list to the incomplete new molecule. When joining the first fragment

the new incomplete molecule simply becomes equal to that fragment. After the



CHAPTER 6. GENERATIVE MODELS FOR CHEMICAL STRUCTURES 144

first join however we must identify a connection atom on the incomplete molecule

and then join the fragment to that connection atom. Clearly we do not want to run

out of connection points until we have joined all atoms in the fragment list but this

is not always possible. However, to ease the problem we proceed by joining the

fragments in order of the number of connection atoms. We start with the fragments

with the most connection atoms and finish with the terminal fragments (fragments

with only one connection atom). At each join if there is more than one connection

atom available then the one used to join a new fragment is selected at random. This

joining process continues until we either run out of fragments in the fragment list or

run out of connection atoms in the new molecule to join fragments to. In the second

case the new molecule can be declared complete. However, in the first case the new

molecule will still have connection atoms present. Due to our simple valence model

described earlier, we can disregard these unused connection atoms and still produce

correct structure. This is because our implicit hydrogen model will correct any

valency problems resulting from unused connection points on fragments through

the addition of hydrogen atoms.

Finally, we perform a filter of the new projection molecules to make sure they

exhibit properties similar to those in the input set. This can either be a coarse

threshold on the number of atoms a molecule should have or a more sophisticated

test of the pharmacological properties of the molecules by using a tool like filter

from the OEChem Toolkit.

6.2.4 Aligning the Molecules

We explained earlier that the best solution to the problem of alignment and comput-

ing similarities is to require that our vectorial descriptions of the input molecules S,

projection molecules P and generated quasi-molecules all eventually reside in the

same vectorial space. In practice this means that we must align all molecules from

the input and projection sets.

In the following sections we describe our approaches to solving this alignment

problem for large sets of molecules and describe some of the difficulties that arise

when working with these types of graphs. Before proceeding we note that we pad

all adjacency matrices so they are the size of the largest graph in S ∪ P .
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Aligning to the Largest Molecule & Associated Problems

Our initial solution to this problem was to identify the largest molecule in the set of

input and projection molecules and then use this as a reference molecule to align all

other molecules. We used the graph matching algorithm of Gold and Rangarajan

[48] on the padded adjacency matrices to perform this alignment.

We found that when all the molecules were approximately the same size as the

reference graph then this was an adequate solution. However, if the molecules dif-

fered greatly in the number of atoms then this solution had significant issues. The

problem arises when the reference molecule contains two smaller almost identical

molecules as subgraphs. If these molecules occupy approximately the same sub-

graph then there is no problem as they will be mapped to approximately the same

part of the vectorial space. However, consider the case when the two subgraphs lie

at opposite ends of the molecule. Then each smaller molecule will be aligned to

a different part of the reference graph and in turn be mapped to a different part of

vectorial space.

While this is correct within the context of an individual alignment, it is prob-

lematic when constructing a statistical model over the vectors as the the same com-

ponent of two input vectors would correspond to different structures. This problem

is a direct result of there being no ordering over the vertices of a graph and is espe-

cially problematic for chemical structures because larger molecules are frequently

composed of smaller molecules. The result of this is a poor vectorial representation

of the molecules.

The key problem here is that we have chosen a bad representative for the set,

but the only other representatives we could choose would be smaller. If we were

to choose a smaller representative then information would be lost when we aligned

larger molecules to this small representative molecule.

Clearly it is not possible to align the molecules in the two sets using a single rep-

resentative due to the large diversity in the projection set (and to a lesser extent the

input set). Therefore, in the following sections we consider solutions with multiple

representatives.
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Partial Hierarchical Alignment Based on a Secondary Distance Measure

In this section we consider a solution to the alignment problem using a partial hi-

erarchical alignment. We select a small set of reference graphs from the input and

projection sets. To obtain this set of reference graphs we cluster the molecules in

the input and projection sets. From each cluster we select a reference graph that

has the minimum sum of distances to all other graphs in the cluster. We then align

the remaining molecules in each cluster to their cluster reference graph to obtain a

global alignment.

The chain of reference graphs is pre-aligned from largest to smallest. We de-

note a sequence of reference graphs as R1, R2, ..., Rn where the indices indicate the

ordering of graphs based on the number of vertices. R1 is the largest graph, R2 is

the second largest graph, etc.

We align the reference set in a chain starting with the second largest. If we let

M(Ri, Rj) be the permutation matrix that aligns Rj to Ri and Ři be the padded

adjacency matrix for Ri then the second largest graph is aligned to the largest as

follows.

R̊2 = M(R1, R2)Ř2M(R1, R2)
T (6.6)

This results in the aligned adjacency matrix R̊2. We then proceed to align the

third largest graph using the result of the previous alignment, R̊2.

R̊3 = M(R̊2, R3)Ř3M(R̊2, R3)
T (6.7)

This process continues until the whole reference set has been aligned.

This method requires a set of clusters of the input and projection molecules to

be computed, and to perform clustering we require pair-wise distances between all

molecules. Once we have the distances we can use Normalized Cut to compute the

clusters. Ideally we would like these distances to be the same as those computed

by the algorithm we use for graph alignment. However, computing the pair-wise

distances for a large set of graphs using a full graph alignment algorithm is a very

computationally expensive procedure. For this reason we must employ a secondary

distance measure that is much faster to calculate than a full graph alignment and

will provide the set of pair-wise distances we require.
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The fingerprint of a molecule is a feature based representation that allows the

similarity of two molecules to be assessed. A full description of molecular finger-

prints is given in section 2.2.1. Both the computation of fingerprints and distances

between fingerprints can be performed quickly allowing us to obtain a full set of

pairwise distances efficiently.

In the previous section discussing the construction of the projection molecules

we described the use of fragments in the process. Each of these fragments are

exactly the kind of structural pattern that a bit in a fingerprint might represent. Given

that we already have complete knowledge of which fragments are present in the

input and projection molecules we constructed a fingerprint representation of each

molecule in S and P using this information. It turned out that these fingerprints

were a poor representation of structure. While they captured the fragments present

in each molecule perfectly, they contained little information on how the fragments

were connected. As a result there was a large discrepancy between the distances

reported by the fingerprint method and the full graph alignment method. As such

using this distance measure resulted in the production of a poor set of clusters.

Next we considered a more general fingerprint method that has better represen-

tational power. In this method we do not compute the fragments a fingerprint identi-

fies ourselves, instead we use a general set of fragments that are known to give good

feature descriptors of molecules. The tool we employ is called Babel from the Open

Babel Toolbox which is a program to convert between different chemical structure

file formats. One of the formats it supports are Daylight style fingerprints [1]. Using

this fingerprint representation we obtained distance measures much closer to those

produced by the graph alignment algorithm. However, there is still enough error

present to produce poor clusters and representative molecules.

The reason for the difference in distance measure is due to how each approach

views structure in the graph. In the fingerprint method the paths present in the

graph are of large importance while in the graph alignment method of Gold and

Rangarajan the edit distance can be considered more important. To see where this

results in a large difference consider a large molecule consisting of a long chain of

atoms. If a bond connecting two atoms near the middle of the molecule is removed

then the set of paths present in the molecule are significantly changed, resulting in

a significant change in the bits of the fingerprint. However, in terms of graph edit



CHAPTER 6. GENERATIVE MODELS FOR CHEMICAL STRUCTURES 148

distance this only corresponds to the removal of one vertex and results in a smaller

change.

Although a secondary, cheaper to calculate, distance measure appeared to be a

good solution we could not find one that displayed approximately the same behav-

ior as the full graph alignment distance measure and this discrepancy resulted in a

choice of poor clusters and reference graphs.

Hierarchial Alignment of the Input Set

We mentioned earlier that finding the set of representatives through computing the

pair-wise distances using a full graph alignment algorithm was infeasible. This is

because the number of distance computations required grows as a square of the total

number of graphs involved in the alignment: O((|S|+ |P|)2). However, if we only

allow the graphs in the input set to be representatives then the problem is alleviated

to some degree. In other words we reduce the total amount of work that adding

another projection graph incurs since we must only compute the distances between

the new projection graph and all molecules in the input set. The complexity of the

approach then reduces to O(|S|2 + |S||P|). We restrict only graphs in the input

set to be representatives since we expect them to be better choices for representing

typical graph structure of the distribution than the projection graphs.

The alignment procedure using this approach proceeds as follows. We must first

align the graphs of the input set which we accomplish through a pairwise hierarchial

alignment. We then compute the distance to each input graph for each projection

graph and align each projection graph to the input graph at minimum distance.

To compute the hierarchical alignment of the input graphs we must compute

the distances between all pairs of graphs in the input set. We obtain this pair-wise

distance matrix by aligning each pair of input graphs in both directions and then

averaging the distances, thus the distance matrix is symmetric. We record the dis-

tance between input graph Si and Sj in the distance matrix D(Si, Sj). We construct

the hierarchial alignment tree by computing the set of graphs that will be present at

each level of the tree, starting from the deepest level first: d. Using the matrix D we

approximately solve the stable roommates problem[56] which involves finding the

set of pairings such that the total sum of the distances of the pairings is minimized.

In each pairing the smaller graph will be aligned to the larger one and then the larger
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one moves up to the next level of the tree (at depth d− 1). At depth d− 1 of the tree

we have approximately |S|
2

graphs and we remake the distance matrix D to include

only graphs present at this depth. Again we approximately solve the stable room-

mates problem on D, align the smaller graph of each pair to the larger and move the

larger graph up to the next level of the tree (depth d− 2). This process repeats until

we are left with one graph that is the root of the tree, which by definition must be

the largest graph in the input set.

With the tree constructed we can then apply all the alignments to the padded

adjacency matrix representations for each graph. We describe the alignment for the

input graphs first. We commence from the leaf representing the input graph: if it is

the larger of the pair then we need not perform any alignment at this stage and we

may move to the next level. If it is the smaller of the pair then we must align it to the

larger before moving up to the next level. At the next level we repeat the procedure,

if it is the larger then we move up with no alignment and if it is the smaller then we

align it to the larger and then move up. This continues until we reach the root. We

denote the sequence of alignments required for input graph Si as ω(Si).

Applying the alignment to the projection graphs is very similar. We require

the computation of a new distance matrix D′ of size |S| by |P| where the distance

between input graph Si ∈ S and projection graph Pk ∈ P is stored in D′(Si, Pk).

We can then find the input graph Si closest to projection graph Pk as follows:

i = argmin
j

D′(Sj, Pk) (6.8)

We denote the matrix M(Si, Pk) as the permutation matrix that aligns Pk to

Si. We align the projection graph to the closest input graph as calculated above

resulting in the following aligned adjacency matrix P̊k for graph Pk:

P̊k = M(Si, Pk)P̌kM(Si, Pk)
T (6.9)

To finalize the alignment we must apply the sequence of alignments ω(Si) to

the adjacency matrix computed in equation 6.9.

We illustrate this procedure with an example tree. Figure 6.3 shows a small hier-

archial alignment tree consisting of five graphs, four input graphs S = {S1, ..., S4}
and one projection graph P = {P1}. The larger graph is always the left child in this
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Figure 6.3: An example pairwise hierarchial alignment tree.

example. To align S4 we must first align it to S3 resulting in the adjacency matrix

M(S3, S4)Š4M(S3, S4)
T

We then move up to the next level and note that S3 is not the larger of the pair

so we must apply the alignment of S3 to S1 resulting in the adjacency matrix

M(S1, S3)M(S3, S4)Š4M(S3, S4)
TM(S1, S3)

T

.

We are now at the root of the tree so no further alignment is necessary. This

sequence of alignments is given by ω(S4). To align the projection graph P1 we

must first align it to its the input graph at minimum distance which is S3 resulting

in the adjacency matrix

M(S3, P1)P̌1M(S3, P1)
T

We then apply the sequence of alignments ω(S3) which are as follows: S3 is the

larger graph of the pair so we move up the tree. Next we find S3 isn’t the larger

graph of the pair so we align to S1 resulting in the following adjacency matrix:

M(S1, S3)M(S3, P1)P̌1M(S3, P1)
TM(S1, S3)

T

We are now at the root so the process is complete. A full pairwise hierarchial

clustering tree for the input molecules from the COX2 data set is shown in figure

6.4. Again the left child is always the larger of the two. Where alignment occurs

the distance between the two graphs is written above the middle of the line.
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Figure 6.4: The pairwise hierarchial alignment tree from the input molecules of the
COX2 data set.

6.2.5 Generating New Molecules

With the projection set now constructed and graphs from both S and P aligned we

proceed to produce a set G of generated graphs. To model the variation in the in-

put graphs we fit a Gaussian mixture model over the aligned vectorized adjacency

matrices of the input graphs. However, as these vectors reside in a very high dimen-

sional space it is difficult to estimate the parameters of the GMM directly in this

space. To solve this problem we reduce the dimensionality of the vectors describing

the input graphs by projecting them into a space determined by performing PCA on

the input set. In this reduced space we still capture the majority of variation in the

input set and can also successfully estimate the GMM parameters. From this we

can generate new vectors in this reduced space describing new quasi-graphs.

However, to complete the generation step we require a mapping from each gen-

erated quasi-graph to the graph from the projection set that it is nearest to. In other

words we need to map the generated vectors to the real molecules in the projection

set. At the moment the projection set and the generated graphs reside in different

spaces so it is impossible to define such a distance measure and compute a mapping.

There are three possible solutions to this problem.

Firstly, we could use the previously calculated PCA projection to project the
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projection set into the same space as the generated vectors. The problem with this

approach is that the PCA projection was constructed from only the input set and

therefore does not represent the variation in the projection set effectively. If the

input set and projection set are very similar then this would be an acceptable solution

however, we expect the projection set to contain new structures and hence it is

unlikely that this will be the case.

A second solution would be to use the inverse of the PCA projection to recover

the generated vectors back into the original space. Then the distances between

the generated vectors and graphs in the projection set could be computed directly.

However, there are two problems with this. First, since we are discarding some

components from the projection to work in the reduced space, then recovering the

generated vectors using this subset of components would introduce errors. Second,

this results in a distance measure defined in a very high dimensionality space and

when noise is present this measure will produce poor matches.

The third solution is an extension of the second one. We can compute a second

PCA projection based on the input and projection sets and use this to reduce the

dimensionality of the original space. The generated vectors are recovered to the

original space (as in the second solution) and then projected, along with the vectors

from the projection set, using the new PCA transform into a second reduced vector

space. The distances can then be calculated in this second reduced vector space.

We choose the third solution to solve this problem since we expect it to intro-

duce the least error and be the most robust to different data sets. If the projection

set contains significantly different structures to the input set then the first method

will not work. The second solution suffers from a distance measure defined in a

high dimensional space. Although the third solution is not ideal in that it inherits

the problem of the second by introducing error in the recovery of the generated vec-

tors, we still feel that it is best suited for the task. Furthermore, as GMM estimation

methods become more powerful the first PCA projection can consist of more com-

ponents and therefore less error will be introduced when recovering the generated

vectors.

To clarify the process we will now describe the sequence of operations required

in more detail. Please refer to figure 6.5 for a diagrammatic representation of the

method that will be referred to through out this description. The process is split up
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Figure 6.5: A diagram showing the process of generating new molecules.

into three stages: fitting the GMM to the input data, sampling from the GMM to

create new quasi-graphs and finally mapping the quasi-graphs onto the graphs from

the projection set.

Fitting the GMM to the Input Data

We commence from the aligned padded adjacency matrix S̊k describing input graph

Sk ∈ S. We stack each adjacency matrix S̊k into a long vector sk
4 using vec(S̊k) and

perform PCA on this set of vectors ( 1© in figure 6.5). This results in a projection

matrix ΦS of eigenvectors and a mean vector µS . We select the top t1 compo-

nents of the projection matrix resulting in a matrix Φ̃S which is ΦS truncated after

t1 columns. The value chosen for t1 is dependent on the amount of sample data

available.

We can now project the vectors describing the input graphs into the space given

by the first PCA projection (PCA1 - 2©):

4Please note that prime symbols on vectors represent which vector space they reside in as shown
in figure 6.5; a vector with no prime symbol (a) means the original space, a vector with one prime
(a′) is in PCA1 space and a vector with two primes (a′′) is in PCA2 space.



CHAPTER 6. GENERATIVE MODELS FOR CHEMICAL STRUCTURES 154

sk = vec(S̊k) (6.10)

s′k = Φ̃T
S (sk − µS) (6.11)

We are now ready to fit a GMM to the data described by the set of vectors

{s′1, s′2, ..., s′|S|}. We use the algorithm proposed by Verbeek et al [109] which cal-

culates the parameters of the GMM using a greedy EM based approach ( 3©)5. The

algorithm is also capable of estimating the number of components in the mixture

model. The output of the algorithm is k multivariate normal distributions. A single

multivariate normal distribution is defined as such:

p(x;µ,Σ) =
1

(2π)n/2
√
|Σ|

exp[−1

2
(x− µ)TΣ−1(x− µ)] (6.12)

with parameters mean µ and covariance Σ. The definitions of these are given in

equations 4.4 and 4.5 respectively. Using p(x;µ,Σ) we can define a k component

normal mixture distribution:

pk(x) =
k∑
i=1

p(x;µi,Σi)wi (6.13)

The mixing weight wi is the probability that a sample from the GMM would be

drawn from component i. As such the sum of the mixing weights must equal one:

k∑
i=1

wi = 1

for i ∈ {1, ..., k} : wi ≥ 0. Therefore, a component i of the GMM is rep-

resented by the triple (µi,Σi, wi) which denote the mean, covariance and weight

respectively.

In order to sample from component i of the GMM we require the set of eigen-

values and eigenvectors from covariance matrix Σi, Λi and Φi respectively. The

eigenvectors describe the principle components of variance in the subset of vectors

that make up this component of the GMM and the eigenvalues describe the variance

of each principle component.

5The external reviewer, Dr. Peter Hall, suggested that the GMM estimation algorithm of
Figueiredo & Jain [44] would produce better results.
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Sampling from the GMM

To sample from the GMM with distribution pk(x) we must first choose which com-

ponent will be sampled. This is accomplished by generating a uniform random

number a in the range (0, 1] and then using a function υ to map this to a component

i.

υ : a→

1 if a ∈ (0, w1]

i if a ∈ (
∑i−1

j=1wj,
∑i

j=1wj]
(6.14)

To sample from component i we first generate a parameter vector b. This is

produced by sampling from a number of 1D normal distributions with zero mean

and variance determined by the diagonal values in Λi. The parameter vector is

computed as such:

b(j) ∼ N (0,Λi(j, j)) (6.15)

We can then project the parameter vector b on the components of the distribution

Φi and add the mean µi to compute a vectorial representation of a new quasi-graph

g′k ( 4©).

g′k = µi + Φib (6.16)

Mapping the Samples to the Projection Set

To map a generated quasi-graphs to the graph from the projection set which is clos-

est we require representations of both graphs to reside in the same vector space. As

discussed in the beginning of this section we accomplish this by using the inverse

PCA transform to recover representations of the quasi-generated graphs to the orig-

inal vector space. A new PCA projection is computed from the input and projection

sets of graphs thus capturing the structural variations contained in the two sets6. The

recovered representations of the quasi-generated graphs are projected into this new

space and distances between graphs may be directly computed. This allows us to

6Although technically we only need to compute the PCA transform from the vectors of the pro-
jection set, we include the input set to enhance the quality of the projection. After all, the generated
quasi-graphs are sampled from the input set so this helps by including information on the variations
in the generated graphs.
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compute the mappings from generated quasi-graphs to graphs in the projection set.

We begin this phase by recovering the generated quasi-graphs using the inverse

PCA transform ( 5©):

gk = Φ̃Sg
′
k + µS (6.17)

We now compute a new PCA space that is more suitable for performing distance

calculations than the original space. To construct this new space we compute a

PCA transform on the vectors describing the graphs in the input and projection sets

(PCA2 - 6©). The vectors of the input set are computed as described in equation

6.10 and the projection graphs are vectorized as follows:

pk = vec(P̊k) (6.18)

The result of the new PCA transform is a mean vector µS∪P and a projection

matrix ΦS∪P . We select the t2 largest components of variance in the projection and

truncate the projection matrix to contain only this information; Φ̃S∪P is the result of

truncating ΦS∪P after t2 columns. We can now project both the projection graphs

and the generated quasi-graphs into this new space as follows ( 7© and 8©).

p′′k = Φ̃T
S∪P(pk − µS∪P)

g′′k = Φ̃T
S∪P(gk − µS∪P)

We are now in a position to compute the nearest projection graph to each quasi-

generated graph. We define a function ρ that maps a generated quasi-graph to the

graph from the projection set at minimum Euclidean distance.

ρ : g′′k → Pj where j = argmin
i

dist(p′′i ,g
′′
k) (6.19)

Therefore, the final multiset of generated molecules is given by Gk = ρ(g′′k) ∈
G. A multiset is used to allow repetitions of projection molecules since it is likely

that repeated molecules will indicate statistical interesting molecules to explore.

Finally, we note that to aid visualizing all three sets, we can also project the

input graphs into PCA2 space ( 10©).
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s′′k = Φ̃T
S∪P(sk − µS∪P) (6.20)

6.3 Experimental Results

We make use of a number of experimental methods to evaluate our process of gen-

erating chemical structure. We will begin with a visual inspection of the generated

molecules and see how they relate in structure to the input set of molecules. Next

we visualize the various distributions constructed throughout the process by using

PCA. Although this is a significant simplification of a very high dimensional data

set, it is nevertheless very useful for comparing distributions. We can also visualize

mappings between sets of graphs by overlaying them on the PCA plot. This will

be useful for visualizing the mappings between the generated quasi-graphs and the

projection graphs. The mappings can also be visualized using histograms. Using

these results we will assess the performance of the hierarchial alignment step, the

applicability of the projection molecules as targets for the mapping of the generated

quasi-molecules, the suitability of fitting a Gaussian mixture model and the quality

of the final generated molecules. We can further assess the quality of the generated

molecules by applying them to our evaluation domain which is the task of docking

molecules to active sites in proteins.

By using a set of molecules that dock with high affinity to the selected active

site as input to our method, we hope to generate molecules that also dock with

high affinity. Although we do not expect to replicate all of the pharmacological

properties that the molecules in the input set exhibit, we do expect that some of

the generated molecules will perform well in the docking test. As discussed in the

introduction, this is because the docking process is primarily a test of structure and

we are generating structurally similar molecules to those in the input set.

This section begins with a brief description of the evaluation domain. For a full

description of docking we refer the reader to section 2.2.4 of the literature review.

A discussion of the programs available for performing docking is also given in the

literature review, although we will describe the program we use here in detail. After

an overview of docking we will evaluate data sets suitable for use with our method.

Then, in the final two sections, we give detailed results for the selected data sets.



CHAPTER 6. GENERATIVE MODELS FOR CHEMICAL STRUCTURES 158

6.3.1 Evaluation Domain

Docking is a subfield of molecular modeling with the aim of finding the best possi-

ble pose of a ligand in the active site of a receptor. To do this the docking program

must calculate a set of features that determine whether the ligand and the active

site are complementary. For example, the molecular surface of the ligand and the

surface of the active site are considered. When the ligand is bound to the receptor

they form a complex, and the affinity with which the two molecules bind may be

measured and described using a scoring function.

The problem is complicated by the fact that most ligands are steroisomers.

Molecules which are steroisomers may exist in a number of different 3D structures,

and most small, drug-like molecules have this property. Therefore, the docking pro-

gram must consider all possible poses of all possible conformations of a ligand to

truly explore the variety of complexes that may be formed.

Docking with Fred

Fred (Fast Rigid Exhaustive Docking) is a tool from the OEChem Toolkit which

provides robust, industry-standard docking between ligands and proteins that can

be performed in an automated manner. It exhaustively examines all possible poses

of all conformations of a ligand using geometric features such as shape complemen-

tarity and features based on pharmacological properties. For the optimal docking

of each ligand it computes a score based on one of its in-built scoring functions.

The average time for docking a ligand is in the region of a few seconds making it

suitable for performing virtual screening on large databases of molecules.

There are a few features of Fred that make it an especially good choice for a

docking program.

• Fred has a “very effective method for determining the shape of an active site

(that works well even on very shallow/open binding sites)”[3]. This is useful

to us since although we know the approximate region an active site occupies,

it is still up to Fred to find the exact active site and calculate its shape.

• Fred uses a multiple consensus scoring method. This provides protection

against any bias a scoring function may give to a particular active site or

ligand.
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• Fred uses an exhaustive, non-stochastic method for determining poses. This

property is important for producing consistent, repeatable results.

• Fred provides a utility, FredTool, that can be used to setup an OEChem spe-

cific file that describes the active site. This tool allows generation of the active

site either by hand or from an already docked ligand.

Using FredTool on a pre-docked ligand produces two volumes describing an

inner and an outer contour. See figure 6.7 for a 3D image of the protein and the

inner and outer contours describing the active site. The inner contour must contain

a significant portion of the docked ligand while the position of the ligand in the

outer contour is less significant. However, any successful docking must not exceed

the boarder of the outer contour. We make use of the chemgauss3 scoring function

to score ligand-protein complexes.

However, by itself Fred is unsuitable for docking the molecules we produce.

This is because we only have 2D descriptions of the molecules after generation

and we clearly require 3D descriptions to proceed with docking. To compute the

full range of 3D conformations for each molecule we generate we make use of

the program Omega from the OEChem Toolkit. Omega can generate a full set of

conformations for a drug-like molecule in a couple of seconds.

Data Sets

Given that we would like to evaluate our generated molecules in a real-world dock-

ing scenario, we require the following properties from any data set we choose.

• A protein that will function as the receptor.

• A bounding box indicating the active site on the protein. Alternatively, an

already docked ligand can provide the bounding box information.

• A reasonably large selection of ligands that are all known to bind with high

affinity for the active site.

To create the type of data set described above we could use the following ap-

proach. We must first choose a protein with a function that is well studied in the

literature and, as a result, has plenty of information regarding the docking affinity of
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a number of ligands. The structure of the protein can be obtained from the Protein

Data Bank (PDB) [9] however the active site must be identified by hand from the

literature. Next, a set of ligands that are reported to bind with a high affinity for the

target must be collected. This step involves searching the literature to assemble the

set or using the results of real-world high-throughput screening against the active

site of the receptor. A file describing each molecule can be downloaded from the

ZINC database [10] which is free and also allows sets of molecules to be retrieved

with ease.

The process above can be considerably simplified by making use of a number

of publicly available data sets. Generally these data sets are constructed with the

idea of testing docking programs in mind. Leach et al [70] give a review paper

describing the state of the art of docking technology including data sets available.

The first type of data sets are those that include a docked ligand with the protein file

thus facilitating setting the volume the active site occupies. PDBbind [111] is one

such data set. It contains a very large number of protein-ligand complexes however,

only one ligand per protein is given therefore making collection of the remainder

of the data set quite difficult. Another data set, Binding MOAD [54], has the same

problem.

The second type of data set available fulfills all the requirements we listed above.

The Directory of Useful Decoys (DUD) [55] describes a total of 2950 active ligands

across a total of 40 target receptors. Not only does this suit our purposes perfectly

but they also include, for each active molecule, 36 decoy molecules with similar

physical properties but dissimilar structure. If we require any tests against a random

set of molecules we can use the set of decoys instead. If we still obtain good results

then we have a stronger result with the decoys than with a random selection since

they are specifically chosen to complicate matters.

From the DUD data set we select two subsets, each consisting of a protein, a

docked ligand and a set of active ligands. The two subsets we selected contain data

on the Cyclooxygenase-2 (COX2) protein and the epidermal growth factor recep-

tor (EGFR) protein. Pharmacological inhibition of the COX protein can suppress

pain and inflammation and is how most non-steroid based anti-inflammatory drugs

function. Mutations involving the EGFR protein can result in it being constantly

active which can lead to certain types of cancer. Therefore, methods of inhibiting
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the function of the EGFR protein can be used to regulate its activation.

We form our data sets as follows. From the set of active ligands we remove

any duplicates that may be present (the duplicates would manifest themselves as

conformers of another active ligand and, since we are not using any 3D information

in our process, they are superfluous). We then use FredTool to setup the active site

using the docked ligand so there is no need to compute the active site by hand. Next,

we preprocess the ligands to remove all hydrogen atoms which results in the model

discussed in section 6.2.2 (the hydrogen atoms become implicit). We then perform

a preliminary docking of the set of active ligands and select the top performing

ligands. For the COX2 data set we select the 39 top scoring ligands and for the

EGFR data set we select the top 110 ligands. These sets of ligands will form the

input to our model.

6.3.2 Results from the COX2 Data Set

We begin our experimental results from the COX2 data set by giving examples of the

molecules contained in it. Figure 6.6 shows 9 different molecules from the data set.

Molecule S1 has the highest binding affinity for the COX2 active site, molecule S2

has second highest affinity, etc. Although it is not immediately obvious from the 2D

depictions they all have a reasonably similar molecular surface. Figure 6.7 shows

the active site of interest for the COX2 protein and figure 6.8 shows the molecule

from the input set with highest affinity docked in the active site. It is for this site

that we will aim to generate molecules that bind with high affinity. The parame-

ters for the results in this section are as follows: the projection set consists of 500

molecules and we sample 200 vectors from the GMM representing the generated

quasi-molecules.

Figure 6.9 shows the top 6 scoring molecules we have generated from this data

set. Scoring in this case is a measure of a binding affinity computed by the docking

procedure described in the previous section. Note the similarities of structure ob-

served between the input molecules shown in figure 6.6 and the molecules shown in

this figure. All the molecules contain a triangle shaped structure that is orientated

to fit in the active site as in figure 6.8. This is clearly seen in graphs G1, ..., G5. In

graph G6 this triangle is more stretched. Also note that the molecules are correct

according to our simple valence model described in section 6.2.2.
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Figure 6.6: Nine molecules from the COX2 data set. Molecule S1 has the highest
binding affinity for the COX2 active site, molecule S2 has second highest affinity,
etc.
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Figure 6.7: The active site of interest in the COX2 protein. The outer contour is
shown as a blue mesh and the inner contour is shown as a green mesh.

Figure 6.8: The active site of interest in the COX2 protein. Molecule S1 from figure
6.6 (the molecule from the input set with highest binding affinity) is shown in its
optimal pose as computed by Fred.
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Figure 6.9: Six molecules we have generated using our approach from the COX2
data set. Molecule G1 has the highest binding affinity from the generated set, G2

the second highest binding affinity, etc.

We now show PCA plots allowing us to view the various distributions con-

structed throughout the process. We will begin from the PCA projection shown

in figure 6.10. This shows the first PCA space that is calculated in the generation

procedure i.e. the space the GMM is constructed in and labeled PCA1 in figure

6.5. This projection shows the input molecules as red plus signs and the generated

vectors from the GMM as crosses. For each component computed by the GMM

we draw ellipses showing the axis of principle variance, one eclipse at the standard

deviation and a second at two times the standard deviation. The means are marked

in the center of the ellipses. In this case the GMM estimation algorithm has chosen

to fit two normal distributions to the data.

For this data set we have set t1 = 7 which means we use the seven largest

components of the projection to transform data. Despite the fact that we are only

visualizing two of these seven dimensions the distributions that have been fitted

look reasonable. Vectors have been sampled spanning the whole space of the input

molecules and in areas where the input molecules are clustered so are the generated

vectors.

The remainder of the PCA projections shown in this section are of the second
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Figure 6.10: A PCA projection of the input set (projected into PCA1 space). The
input set is marked with plus signs and the generated quasi-molecules are marked
with crosses. Also shown are ellipses indicating the axis of principle variance of the
normal distributions determined by the GMM algorithm.
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Figure 6.11: A PCA projection of the input set (marked with plus signs) and the
projection set (marked with circles). The weight of each projection graph is given by
the colour of the circle representing it, blue indicates low weight and red indicates
high weight
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PCA transform (labeled PCA2 space in figure 6.5). The parameter t2 was set to

seven again so we use the seven largest components of the projection to transform

data. We begin by showing just the molecules from the input and projection sets

(figure 6.11). This projection shows the input molecules as red crosses and pro-

jection molecules as colored circles. The color of each circle indicates the molec-

ular weight of the projection molecule, with blue being molecules of low molecu-

lar weight and red indicating molecules of high molecular weight. The molecular

weight of molecules is approximately increasing in one direction over the plot which

is expected as molecules with similar weight will align well to each other (see sec-

tion 6.2.4 on hierarchial alignment). The hierarchial alignments clearly have a large

impact on the distances between molecules in the resulting vector space and this

can be observed in the PCA plot. Notice the large cluster of input graphs in the

middle right of the plot. This has arisen since the distances between alignments of

these molecules are all relatively low values. The input graphs contained in the right

middle cluster are the majority of the graphs contained in the subtree at depth 2 of

graph 39 in figure 6.4.

We can now begin to evaluate one of the main goals of this research: are the set

of projection molecules close enough to the input distribution to effectively allow

generated graphs to be mapped to them? In other words do we have diversity in

the projection graphs and are these diverse regions near clusters of input graphs?

By a visual inspection of the PCA plot in figure 6.11 we can see that this require-

ment has been suitably fulfilled. Although there is a slight lack of projection graphs

near the middle right cluster, the remainder of the space is well covered by pro-

jection molecules. Another important aspect is that the projection molecules we

constructed in the process are different to the input molecules, i.e. we are not just

duplicating the input set. To verify this further we used the distances computed by

the full graph alignment algorithm in the hierarchical alignment process to check

whether any of the projection graphs had zero distance to the input graphs. We

found no distances of zero, meaning that no projection graphs appear in the input

set.

We can assess the effectiveness of the projection set further by considering our

alignment step. Ideally we would like approximately the same number of projection

graphs to align to each input graph which would indicate that we have constructed
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Figure 6.12: A histogram showing the percentage of projection graphs that align to
a specific input graph in the hierarchical alignment step.

projection graphs that are close in distance to the whole range of input graphs. The

histogram in figure 6.12 shows the percentage of projection graphs that map to an

input graph. Obviously this method is open to error in the following situation: if

two input graphs are very near each other then the majority of projection graphs in

that area might map to only one input graph. This would indicate the other input

graph is not well represented in the projection set, which would be an incorrect

conclusion. However, this is a minor issue and the results from the histogram show

that mappings are relatively equal across the input graphs.

The exceptions are the large discrepancies of input graph 6 and 33 which can

be explained by the projection graphs that are significantly smaller and significantly

larger than those in the input distribution. Since input graph 6 is the largest of the

input distribution we would expect that all projection graphs that are larger than

graph 6 would be aligned to it. The same applies to graph 33 which is one of the

smallest in the input set.

We now consider the generated graphs both in the distribution they form and the

mappings from the quasi-generated graphs to the projection graphs. We begin by

introducing a PCA plot of the generated quasi-graphs projected into PCA2 space

(the space constructed from the input and projection sets). This is shown in figure
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Figure 6.13: A PCA projection of the input set (marked with plus signs), the pro-
jection set (marked with circles) and the quasi-generated set (marked with crosses).
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Figure 6.14: A PCA projection with the same data as figure 6.13. Matches between
generated quasi-molecules and molecules from the projection set are shown.
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6.13 where the markers are as before except crosses have been introduced to indicate

generated quasi-graphs. In figure 6.14 we indicate the mappings from generated

quasi-graphs to projection graphs by drawing a line between their two markers on

the PCA plot.

We will now assess whether the generated quasi-molecules lie in the correct

parts of the space after their recovery into the original space and then the re-projection

into PCA2 space (see figure 6.5). Although we can only consider the first two

components of the distribution in figure 6.13 we can see that the generated quasi-

molecules still cover the distribution of input graphs well, especially near the cluster

on the right side of the plot. The remainder of the space is sparsely populated with

input graphs and correspondingly the generated quasi-molecules also sparsely cover

this space. The mixture of normal distributions seems an appropriate way to model

this data.

We will now assess the quality of the mappings. We would expect a high qual-

ity mapping to map each quasi-generated molecule to a projection molecule a short

distance away. Furthermore, we would not expect many quasi-generated molecules

to map to the same projection molecules. This would indicate a lack of diversity

of projection molecules in a space where there was a very high probability of pro-

ducing samples from the input distribution. We can observe from the PCA plot

with mappings overlayed (figure 6.14) that where the samples from the GMM are

appropriate, our mappings also seem to be appropriate. However, when outliers

from the input distribution are mapped to a projection molecule the mapping is sig-

nificantly worse. However, this only occurs in a 20-30 out of the 200 generated

quasi-molecules.

In some areas there are not enough projection molecules and we end up with

many generated quasi-molecules mapping to a single projection molecule. This

occurs in the cluster of input graphs on the right of the plot. As stated before this

indicates that there is not enough diversity in this area of chemical space. However,

this is not a significant problem as it can be resolved by populating the projection

set with more molecules. Due to the relatively fast hierarchical alignment step this

is not a very costly procedure.

Now we have identified the set G which consists of the unique subset of pro-

jection molecules that the quasi-generated molecules map to, we can visualize the
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Figure 6.15: A PCA projection showing the input set (plus signs) and the subset of
the projection set (circles) that comprise the true generated set.
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Figure 6.16: The docking scores of the molecules in the input and generated sets
sorted by score. In addition a random sample of molecules from the projection and
decoy sets are included for comparison.

distribution in PCA1 space again. This is shown in figure 6.15. When viewed this

way we can see that our generated set is distinct to the input set and diverse in terms

of structure. We have also generated graphs spanning the whole space of the input

set. There is a disappointing lack of generated graphs about the right cluster of input

graphs but as discussed above this could be improved by populating the projection

set with more molecules.

We now describe the results of applying this set of generated graphs to the evalu-

ation domain, that is, docking them to the identified active site on the COX2 protein.

We begin by constructing all the conformers for every molecule in the generated set

by using Omega. The average number of conformers for a molecule from the gen-

erated set is 50, with some molecules having as many conformers as 150. This is a

good result as there is plenty of conformational space for Fred to explore to find a

high scoring docking pose. On the other hand, there is not too much conformational

flexibility as to render the 2D description of the molecules unimportant.

The six top scoring molecules are shown in figure 6.9 at the start of the results

section. Figure 6.16 shows the docking score for four sets of 39 molecules sorted

by score (we limit each set to 39 since this is the number of molecules in the input
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set). Unsurprisingly, the highest scoring set is the input set. The second highest

scoring set is the set of generated molecules.

To provide some comparison to the scores of the generated set we include the

scores of two additional sets. The first is a random sample of 39 molecules from

the set of decoys supplied with the DUD data set for the COX2 protein (see section

6.3.1). This shows, as we would expect, that choosing a random sample of chemical

structures results in a set of molecules that do not dock well with the active site.

Because these molecules are chosen from the decoy data set it provides a stronger

result than just sampling 39 molecules at random from chemical space.

The second data set is a sample of 39 molecules from the projection set. With

this set we are showing that taking the projection set by itself is not enough to

produce a set of molecules that dock with high affinity. In other words, the subset

of the projection set that is produced using our method is vastly superior.

In total we generated 88 unique molecules. The highest scoring molecules in the

generated set are quite good however, none approach the best scoring molecules in

the input set. Despite that the top ten generated molecules are all very successful at

docking and this drops off slowly when we consider the remainder of the molecules.

All molecules with a score over 80 give a reasonable docking.

In this section we have shown that we can successfully generate a set of molecules

that dock with high affinity without having to examine hundreds of thousands of

molecules. We conclude this section by showing the docking for the highest scor-

ing generated molecule ( graphG1 in figure 6.9). This is given in figure 6.17. Please

refer back to figure 6.8 to see that the generated molecule docks in a similar way to

the top scoring input molecule.

6.3.3 Results from the EGFR Data Set

We will present the results from the EGFR data set in the same format as those

from the COX2 data set and therefore description of the mechanisms of providing

results will be terse in this section. Figure 6.18 shows 9 different molecules from

the input set. Molecule S1 has the highest binding affinity for the EGFR active

site, molecule S2 has second highest affinity, etc. The majority of the molecules in

the figure have the same type of structure. That is, a large center functional group

with two functional groups extending from either side of the center. Figure 6.19
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Figure 6.17: The active site of interest in the COX2 protein. Molecule G1 from
figure 6.9 (the molecule from the generated set with highest binding affinity) is
shown in its optimal pose as computed by Fred.

shows the active site of interest for the EGFR protein and figure 6.21 shows the

molecule from the input set with highest affinity docked in the active site. Figure

6.20 shows an alternate view of the active site. This view shows that this active site

differs considerably from the active site on the COX2 protein. This is unsurprising

of course, however it’s more general shape will allow a larger set of molecules to

dock successfully than the more specific shape of the COX2 active site. We will

examine this issue more closely when we discuss the docking results.

The parameters for the results in this section are double those for the COX2

data set. This is due to having significantly more input data available - 39 input

molecules for the COX2 data set versus 110 for the EGFR data set. The projection

set consists of 1000 graphs and we sample 400 vectors from the GMM representing

the generated quasi-molecules.

Figure 6.22 shows the top 6 scoring molecules we have generated from this data

set. Some of these molecules are very similar to those in the top scoring set of input

molecules (figure 6.18). Specifically G1, G3, G4 and G6 have the same bulky center

structure with two smaller functional groups attached. Note that G6 has been drawn

differently due to the optimization based drawing algorithm. Molecule G2, with
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Figure 6.18: Nine molecules from the EGFR data set. Molecule S1 has the highest
binding affinity for the EGFR active site, molecule S2 has second highest affinity,
etc.
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Figure 6.19: The active site of interest in the EGFR protein. The outer contour is
shown as a blue mesh and the inner contour is shown as a green mesh.
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Figure 6.20: An alternate view of the active site of interest in the EGFR protein.

Figure 6.21: The active site of interest in the EGFR protein. Molecule S1 from
figure 6.18 (the molecule from the input set with highest binding affinity) is shown
in its optimal pose as computed by Fred.
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Figure 6.22: Six molecules we have generated using our approach from the EGFR
data set. Molecule G1 has the highest binding affinity from the generated set, G2

the second highest binding affinity, etc.

its long but bulky in the middle shape, fits the active site very well. However, it is

probably a poor choice for a drug given its large mass. Finally, G5 is also a good fit

for the active site but is only vaguely similar to those in the input set.

We will now show PCA plots beginning with figure 6.23. This figure shows

the input molecules and generated quasi-molecules in PCA1 space. Also shown

are the components of the GMM. We have chosen to set t1 = 12 for this data set

which results in increased accuracy of the recovered generated quasi-molecules.

Furthermore, as we have significantly more input data in this data set we have more

modes of variation that we would like our reduced space to represent. As a result

it is harder for the GMM algorithm to fit mixtures to the data properly so it fits less

mixtures to compensate. Although the mixtures chosen by the algorithm are not

ideal, they are adequate. The two distributions on the left are good but preferably

the distribution on the right should be split into two different distributions. However,

as we are only viewing 2 of 12 dimensions there could be unseen factors that are

contributing towards this selection.

We now turn to PCA projections showing PCA2 space. We set the parameter

determining the number of dimensions in PCA2, t2, to 10 for this data set (again,
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Figure 6.23: A PCA projection of the input set (projected into PCA1 space). The
input set is marked with plus signs and the generated quasi-molecules are marked
with crosses. Also shown are ellipses indicating the axis of principle variance of the
normal distributions determined by the GMM algorithm.
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Figure 6.24: A PCA projection of the input set (marked with plus signs) and the
projection set (marked with circles). This projection is in PCA2 space.
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increased compared to the COX2 data set because of the increased size of the input

set).

Figure 6.24 shows the input and projection sets. We have successfully gener-

ated projection molecules covering the whole of the input space, and they are also

clustered in the regions of that the input molecules are clustered. The only problem

here is that we have generated a large number of redundant projection molecules in

the bottom left of the plot which reduces the effectiveness of this projection set. We

can also see from this figure that the projection set is distinct to the input set, we

are not simply replicating the input set in our construction of the projection set. We

performed an exhaustive search to check for any projection molecules that appear

in the input set and none were found.

In the previous data set the spaces of PCA1 and PCA2 looks quite similar, how-

ever in this data set they appear quite different. This is due to the increased size of

the projection set. Certain input molecules (specifically those in the bottom left of

figure 6.24) were under-represented in the input data and as such when the PCA1

transform was computed the variation they express was also under-represented.

However, in the projection set there are a great number of molecules all similar to

those outliers. This results in the PCA2 space expressing this variation, and there-

fore making the two projections appear quite different. However, we argue that this

is not a problem since we are only interested in capturing variation in the input set

for the model that generates new graphs and this is exactly what basing the GMM

in PCA1 space does.

As in the COX2 results we can use a histogram to assess whether the projection

graphs are being generated over the whole space of the input graphs. Figure 6.25

shows the percentage of projection graphs that are mapped to a single input graph.

Again we see quite uniform results with the exceptions being input graphs 15, 83

and 100 which have significantly more graphs mapped to them. The reason for this

is the same as the outliers in the histogram shown in the COX2 data set, input graph

15 is the smallest in the input set and as such many very small projection graphs are

mapped to it. Equivalently, 83 and 100 are two of the largest graphs in the input set

and graphs in the projection set that are larger than any of those in the input set are

mapped to these.

In figure 6.26 we show the generated quasi-molecules in PCA2 space overlayed
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Figure 6.25: A histogram showing the percentage of projection graphs that align to
a specific input graph in the hierarchical alignment step.

on top of the input and projection sets. The increased value of t1 helps in making

this recovery and re-projection step successful. The generated quasi-molecules span

the space of input molecules well and although there are some outliers, there are not

a significant number of them. Specifically, in the void between the top left cluster

and the remainder of input graphs there are very few generated quasi-graphs.

In figure 6.27 we show the matches between generated quasi-molecules and the

molecules of the projection set. Since these matches are computed in 10 dimensions

(t2 = 10) when viewed in 2 dimensions they look a little chaotic.

Finally, we move back to PCA1 space and re-project the subset of the projection

set that comprises the generated set into the space of input molecules. Here we see

that the distribution of the generated molecules agree with the distribution of input

molecules and span the space well. In particular, where clusters of input molecules

appear, often clusters of generated molecules do too and where voids lie, there are

few generated molecules. In total we produce 199 molecules in the generated set.

When Omega is used to compute the 3D conformations of the generated molecules

we obtain an average of 65 conformers per generated molecule. This provides Fred

with plenty of poses to explore to find the optimal conformer and pose combination.

We now discuss the docking results which are given in 6.29. It is immediately



CHAPTER 6. GENERATIVE MODELS FOR CHEMICAL STRUCTURES 184

Figure 6.26: A PCA projection of the input set (marked with plus signs), the pro-
jection set (marked with circles) and the quasi-generated set (marked with crosses).
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Figure 6.27: A PCA projection with the same data as figure 6.26. Matches between
generated quasi-molecules and molecules from the projection set are shown.
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Figure 6.28: A PCA projection showing the input set (plus signs) and the subset of
the projection set (circles) that comprise the true generated set.
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Figure 6.29: The docking scores of the molecules in the input and generated sets
sorted by score. In addition a random sample of molecules from the projection and
decoy sets are included for comparison.

apparent that the set of generated molecules dock well with this active site. As dis-

cussed earlier this is due to the more generic shape of this active site when compared

to the COX2 active site. While the generated set appears to perform very well in

comparison to the input set it is important to remember that the molecules of the in-

put set are real drugs and have additional constraints imposed such as selectiveness

of binding, druglikeness and valid synthesis routes. For example, ligands identified

in the lead hopping process that bind with a great number of active sites must be

discarded since they will interfere with the function of proteins other than the re-

quired target. We postulate that many of the generated molecules would display the

same problem, however this is out of the scope of our research.

This view is reinforced when we consider the performance of the sample of

decoys compared to the performance of the decoys in the COX2 active site. Recall

from the COX2 docking results (6.16) that the performance of the decoys dropped

off very quickly. In other words, we identified a few decoys that bound well but

the majority performed poorly. Contrast this with the performance of the decoys

in the EGFR active site and we see that the decoys for the EGFR protein perform
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Figure 6.30: The active site of interest in the EGFR protein. Molecule G1 from
figure 6.22 (the molecule from the generated set with highest binding affinity) is
shown in its optimal pose as computed by Fred.

much better and do not tail off quickly in the same way the COX2 ones did.7 This

suggests that it is much easier for a random molecule to bind to the EGFR active

site than the COX2 active site. The same result is seen when we consider docking a

random sample of the projection set.

We conclude this section of results by giving the generated molecule that docks

with the highest affinity (G1 from figure 6.22) in its optimal docking pose in the

EGFR active site. This is shown in figure 6.30.

6.4 Conclusion

In this chapter we have demonstrated how a generative model for chemical struc-

ture may be constructed. The task of generating chemical structure is significantly

harder than that of generating simple and weighted graphs due to the additional

set of constraints governing what constitutes a valid chemical structure. The chal-

lenges this presents forces us to look at new ways of generating relational data and a

wide range of methods were suggested in section 6.1.2 to solve the problem. These

7The sets of decoys are different for the two proteins.
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range from extensions of previous methods devised in this research to considering

a distribution of edit operations on linear descriptors known as SMILES strings, to

possibly generating chemical structure in a statistically way by the use of reaction

simulation. In the end the method chosen involved both an extension of previous

work and the introduction of new ideas to cope with the additional constraints of

chemical structures.

The proposed method works by a three stage process. The first step involves

the construction of a projection set of valid chemical structures near those of the

input set in chemical space. The second step constructs a generative model over the

molecules of the input set and allows us to sample quasi-molecules from the distri-

bution. The final step is to map the generated quasi-molecules onto the molecules

of the projection set.

This method allows us to approximate sampling chemically correct structures

from the distribution of input molecules. The approximation arises from the step

involving mapping true samples to molecules from the projection set. While this

additional mapping step does introduce a small amount of error into our method we

do not believe this to be significant and indeed we have shown via extensive results

that the molecules we generate are of high quality for the task they are designed for.

Furthermore, this error can be reduced by increasing the number of molecules in the

projection set and therefore reducing the average distance of the mapping between

a quasi-molecule and a molecule from the projection set.

One of the most challenging aspects of this work was finding a method of per-

forming a global alignment on the graphs from the input and projection sets. This

arose as a requirement from the need to compute the similarities between the gener-

ated quasi-molecules and the molecules from the projection set. The complications

introduced by aligning chemical structures and the large sizes of the sets in ques-

tion contributed significantly to the complexity of the problem. The solution was to

perform a hierarchical alignment between the graphs of the input set and then slot

the graphs from the projection set into an appropriate position in the hierarchical

alignment tree. This not only resulted in good alignments which are indispensable

for constructing our generative model but the complexity increases polynomially

only in the size of the input set. In contrast, an addition to the projection set only

results in a linear increase in the amount of computation required. This is the main
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reason behind the extendability of the approach through increasing the size of the

projection set, the additional graphs do not cause the alignment step to become

infeasible.

The mechanisms of action in chemical reactions and the field of fragment-based

drug design have also played vital roles in this work. The observations by Johnson

and Maggiora [59] and Patterson et al [85] that the properties of a molecule are

heavily dependant on its structure are of course of vital overall importance. How-

ever, the idea that we can construct a useful set of molecules that constitute the

projection set takes its ideas from fragment-based drug design. This arises from the

observation that molecules in the input set often perform well at their task due to the

specific set and arrangement of functional groups they are made from. Therefore,

being able to construct more molecules by breaking those from the input set apart

and then reassembling them into whole molecules is what makes this approach pos-

sible. Of course there are other ways to construct the projection set and some of

these are detailed in the future work section. However, we feel the fragment based

approach is the most appropriate in this situation.

The idea of a molecule’s function being based on its structure leads us to our

evaluation domain, that is the task of docking molecules to active sites in proteins.

By populating the input set with molecules that perform well at docking with a

certain target, and noting that this performance is mostly based on a molecule’s

structure, we expected that additional structurally similar molecules we generated

would also dock successfully to the target. This indeed proved to be the case, at

least in the virtual docking environment we used. Molecules were generated for two

target sites, one in the EGFR protein and one in the COX2 protein. In both cases

we generated molecules that dock with high affinity and this result was reinforced

when compared to the docking scores of a random sample of the projection set and

a random sample of a decoy set. The EGFR docking scores were especially high

due to the rather general shape of the active site in question.

In addition to the docking results, we have shown 2D images of generated

molecules, PCA plots of the vector spaces used throughout our process and his-

tograms indicating the distribution of mappings to provide answers to questions

that arose during the design of this approach. Some of those are: Is the projection

set suitable for mapping generated quasi-molecules to? Does the hierarchical align-
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ment step result in vectors that adequately describe the graphs? Is fitting a GMM

the correct choice to model the input set with?

In conclusion we note that while the chemical structures we generate perform

well on our evaluation domain, there is an incredible amount more that goes into

transforming one of these structures into a successful drug. Therefore, we do not

claim that any molecules that we generate would be suitable for use as drugs, or

even synthesizable in the real world using current techniques. What we do hope

however, it that this approach will be useful for exploring the vastness of chemical

space in a region where some information about the required structures is already

known.

6.4.1 Future Work

There are a number of ways this work can be extended and we list the most relevant

of these below.

The hierarchical global alignment step is designed to produce meaningful align-

ments between molecules even when the projection set is very large in size. How-

ever, it is still, by far, the most computationally complex step in the process. There is

room for improvement here; in contrast to the method proposed in Chapter 4, we do

not directly reconstruct a generated graph from its vectorial description. Instead, we

map generated samples to the nearest correct molecule that is available. Therefore,

we could use vectorial descriptions of graphs that do not have inverse mappings. In

other words, feature vectors may be constructed from graphs but graphs cannot be

recovered from the feature vectors. The benefit here is that many of these feature

based descriptions are invariant in the ordering of the graph vertices. Therefore, the

expensive alignment step could be replaced in favor of a vertex invariant vectorial

description[22, 101, 123]. However, it should be noted that feature based repre-

sentations are not as robust as representations that retain the full set of available

information.

So far we have only applied this framework to the domain of chemical struc-

tures. However, there is no reason why it cannot be used for any domain that re-

quires constrained graph structure to be generated. The main requirement for ex-

tending this approach for a particular type of graphs is that a method of constructing

the projection set is available. While we have only used a fragment based approach
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for chemical structure, there are many other ways to construct the projection set

which we outline later.

A simple type of constrained graphs are planar graphs. The constraint is that

they must be drawable in a 2D plane such that edges only intersect at end points. If

the generative models described in chapter 4 or 5 were applied to such graphs then

it would be possible to generate non-planar graphs. Of course, the constraints on

planar graphs are far simpler than chemical structures and generated graphs could

be corrected by removing the edges causing the embedding problems. However, if

the framework described in this chapter were used then the generation of non-planar

graphs would be impossible.

Currently the projection set is constructed using a fragment based approach.

While this provides correct molecules within a very simple model of chemistry, to

enhance the usefulness of this approach in the real-world better ways of constructing

the projection set are required. We outline some of these below:

• The simplest way to improve the molecules contained in the projection set

would be to perform a more advanced filtering step. Since we know that

we are searching for drug-like molecules we can apply various measures that

have been developed that specify how “drug-like” a molecule is. One ex-

ample of such a measure is Lipinski’s Rule of Five [72] which places upper

bounds on four molecular criteria. Recently, interest has grown in the area

of lead-likeness. This concept differs from drug-likeness since drugs require

no further alterations where as lead molecules will likely be refined several

times. The main result of this is that the molecular weight of a lead will in-

crease and therefore criteria’s determining lead-likeness generally specify a

lower upper bound on molecule weight. An investigation of leads vs drugs is

given by Oprea [84].

• Another possibility would be to use reaction transform networks to generate

new molecules. In these systems, a medicinal chemist specifies a set of re-

actants and rules by which they may be reacted. The possible reactions are

then applied to the reactants thus generating a set of products. The problem

with this approach is that it requires extensive training and domain knowl-

edge to set up the correct reactions. However, by producing the projection set
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in a manner that resembles real-world reactions, the chance of being able to

synthesize the molecules is much higher.

• Another method of populating the projection set would be to extract a subset

of molecules from a large database. By computing a crude set of similarities

between the elements of a large chemical database (such as ZINC [10]) and

the molecules of the input set, the molecules in the database could be ranked

by similarity to those in the input set. The top xmolecules from this list could

then be used to populate the projection set.

Our final suggestion for future work on this topic is to implement a more accu-

rate method of estimating the parameters of the GMM. Currently we obtain suffi-

cient results when working on data with up to 12 dimensions. However, the error

introduced by moving between PCA spaces when generating new molecules (see

section 6.2.5) could be reduced if the GMM were based in a higher dimensional

space.
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6.5 Symbols

S, Sk,Sk, S̊k, sk, s′k, s′′k The set of input molecules is termed S. A graph drawn

from this set is Sk. An adjacency matrix representation

of this graph is given by Sk and an aligned version of

this matrix is S̊k. This graph can be represented by a

long vector sk. When in PCA1 space this becomes s′k

and in PCA2 space s′′k.

P , Pk,Pk, P̊k,pk,p
′
k,p

′′
k The set of projection molecules is termed P . A graph

drawn from this set is Pk. An adjacency matrix repre-

sentation of this graph is given by Pk and an aligned

version of this matrix is P̊k. This graph can be repre-

sented by a long vector pk. When in PCA1 space this

becomes p′k and in PCA2 space p′′k.

G, Gk,gk,g
′
k,g

′′
k The set of generated molecules is termed G. A graph

drawn from this set is Gk. This graph can be repre-

sented by a long vector pk. When in PCA1 space this

becomes p′k and in PCA2 space p′′k.

Bki,B,Bk Fragment i from molecule Sk is termed Fki. The set

Bk contains all the fragments found in graph Sk. The

set B contains all fragments i.e. ∪|S|k=1Bk.
ζ A function that maps a fragment Bki to the number of

times it occurs in occurs in input molecule Sk.

Fi,F ,Fij The set of unique fragments in B is given by F . For

each unique fragment Fi, Fij gives the occurrences of

the fragment in B where it occurs with multiplicity

greater than or equal to j.

Pi(j) Gives the probability of fragment Fi occurring with

multiplicity j.

Ri,Ri, R̊i Reference graph i is given byRi with adjacency matrix

Ri and aligned adjacency matrix R̊i.

M(Y,X) The matching matrix that aligns graph X to Y .

D,D′ Distance matrices.

w(Si) The alignment sequence that is applied to input graph

Si.
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µS , ΦS , Φ̃S , t1 The ingredients of the PCA1 projection: µS is the

mean vector, ΦS gives the principle components and

Φ̃S are the top t1 principle components.

µS∪P , ΦS∪P , Φ̃S∪P , t2 The ingredients of the PCA2 projection: µS∪P is the

mean vector, ΦS∪P gives the principle components and

Φ̃S∪P are the top t2 principle components.

µi, Σi, wi, Λi, Φi The ingredients of component i of the GMM: µi is

the mean vector, Σi is the covariance matrix, wi is the

weight of componenti, Λi and Φi are the eigenvalues

and eigenvectors of the covariance matrix.

v A function for selecting which component of the

GMM should be sampled.

b A parameter vector of a multivariate normal distribu-

tion.

ρ A function that maps a generated quasi-graph onto the

nearest graph from the projection set.



Chapter7
Conclusion

In this chapter we will begin by giving a summary of our work and the most impor-

tant conclusions that we have drawn. Secondly, we will describe the future work

that we feel would be most valuable to pursue.

7.1 Summary of Contribution

We have developed and evaluated methods for constructing generative models of

relational graphs. In each case we insist that our models are fully generative in

the sense that new examples may be sampled from the distribution. We provide a

summary of our contribution for each chapter in this thesis.

7.1.1 Mixing Spectral Representations of Graphs

We began by investigating the use of the spectral representation to mix graph struc-

ture, which was detailed in chapter 3. While this approach is not a generative model,

it paves the way for the generative models defined on the spectral decomposition

which are described in chapter 4. The use of the spectral representation is an inter-

esting one for mixing graph structure due to the separation of scales of connectivity

within the graph. By selecting the eigenmodes of sample graphs with different pro-

portions, we can combine different levels of structure from different graphs into a

single graph. However, moving from the spectral domain back to the graph domain

is not a trivial process due to the spectral representation of a mixed graph not dis-

playing the required properties. To solve this we apply a thresholding step to the

196
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elements of the recovered matrix representation.

Using this approach, we performed pair-wise mixing between graphs from two

different sets in an effort to generate new graphs that displayed some properties of

both sets. By computing the edit distance between all pairs of graphs we were able

to perform an MDS embedding to visualize the results. This result showed that we

had successfully generated mixed graphs that spanned the space between the two

sets.

An approach described by Ferrer et al [37] uses the spectral representation to

construct a median graph by performing sequential updates. By mixing all graphs

from the set in the same proportion, we can directly compute a spectral representa-

tion of a median graph. Using our recovery technique, a graph can be found from

this spectral representation. In another paper by Ferrer et al [38] they have com-

pared their approach of computing the median through incremental updates to our

approach of directly computing the median through mixing. They report that both

methods perform similarly, with the exception of high noise in which their approach

performs better. The evaluation domain they use is that of line drawings.

7.1.2 Vectorial Generative Models for Graphs

In chapter 4 we introduced our first generative model. Building on the models of

Luo et al [75] and Xiao & Hancock [126], we defined a number of different vector

spaces describing graphs on which a generative model could be based. This basic

procedure holds for all models; after an initial alignment step, in which all graphs in

the sample set are aligned to the largest, we construct a vectorial representation for

each graph. We fit a normal distribution over the vector set by performing PCA on

the vectorial representations. This identifies the principle modes of variation in the

vectors and hence also in the structure of the graphs. Using standard techniques we

can fit a normal distribution to the vectors and sample from it to generate new exam-

ples. However, due to the sampling process we will not always sample vectors that

display the required properties to reconstruct into graphs. For example, when using

the spectral representation the eigenvector set may not be orthogonal. Nevertheless,

we define a recovery step for all our approaches that allows us to reconstruct graphs

from the generated vectorial descriptions.

We defined simple models such as those based directly on the adjacency matrix
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(the model proposed in [75]) and on the Laplacian. By moving to the spectral rep-

resentation we constructed models that better account for the structural variations

present in a graph set. These models consisted of a single vector describing the

spectral representation (similar to that described in [126]) and a dual-vector repre-

sentation where the eigenvalues and eigenvectors are modeled separately. We found

this necessary, because due to the combining of eigenvalues and eigenvectors into a

single vector, the eigenvalue distribution becomes distorted. As mentioned before,

the eigenvector sets that are generated using this model do not display all of the

required properties to be a valid spectral decomposition. While it is possible to cor-

rect this to some extent, by using an orthogonalization step for example, we sought

methods that would generate only correct matrices.

The solution lies in the notion that the vector space of valid eigenvector matrices

resides on a manifold. By using the exponential map we were able to define trans-

formations to and from this manifold. Using this we defined a model in which each

eigenvector matrix is projected into a tangent space on which a normal distribution

may be formed. Eigenvector matrices generated using this method display all the

required properties and therefore the reconstruction step is simple. We extended our

use of manifolds to Laplacian matrices. By modeling our Laplacian matrices on the

manifold of positive definite matrices we enforce the generation of valid Laplacians.

We performed an extensive set of experiments on all the models to assess the

following points: the classification accuracy, the distributions they form and the

distributions of generated graphs, the compactness of the models and the appro-

priateness of fitting a normal distribution. By using three different data sets which

range in the type of noise present from random to structural, we were able to observe

some overall trends.

We found that simple models such as those based on the adjacency and Lapla-

cian dealt very well with the more random noise but not so well with structural

noise. This is due to the relative simplicity of the models. On the other hand, the

model based on the dual-vector spectral representation performed poorly on the ran-

dom data set but very well on the structural data sets. This was consistent with our

expectations as the spectral representation is more capable when used with highly

structural data. The single vector spectral representation performed quite poorly

throughout the experiments largely due to the eigenvalue magnitude problems men-



CHAPTER 7. CONCLUSION 199

tioned earlier. Finally, while the addition of the orthogonal map to the dual spectral

model should have provided tangible benefits, this did not seem to translate through

into our experimental results. On the other hand, it did simplify the recovery of

generated matrix representations.

7.1.3 Parts Based Generative Models for Graphs

In chapter 5 we introduced our second generative model for graph structure. In

this model, instead of representing the graphs as whole entities, we construct our

model using a decomposition based approach. If the data in question is applicable

to a segmentation process then this results in a more accurate generative model.

Furthermore, the decomposition step reduces the computational complexity of the

approach making it applicable to very large graphs.

The approach begins by decomposing each sample graph into a number of sub-

graphs. The subgraphs and the cut connection between subgraphs are stored and

form the input to our model. The subgraphs from all sample graphs are clustered

to determine which represent similar structure. With each subgraph assigned to a

cluster we can change our view of connections between subgraphs to connections

between clusters. We then construct models determining the distribution of clusters

present in each sample graph, the distribution of subgraphs within each cluster and

the distribution of connections between clusters. By sampling from all three mod-

els we can generate a new graph that has structural properties similar to those of the

sample set.

However, there are some issues with this approach. The key problem is that by

grouping connections between clusters together we are making the assumption that

subgraphs from the same cluster are always connected in the same way, which is

not a realistic assumption. For example, in situations where a number of instances

of a cluster appear in a single sample graph it is very unlikely that they will all be

connected in the same way. An example of this would be scenes involving multiple

instances of the same object. We suggested some solutions to this problem in the

chapter and we repeat the most promising of these in the future work mentioned

later.

Despite the problems with this approach, when the sample data suited the method

we saw good results. We used both synthetic and real-world data to assess the utility
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of the generative model. Both data sets took the form of point sets since this pro-

vided us with a way to actually visualize the generated graphs. The real-world data

set was produced by performing a motion capture step on an articulated object. We

were then able to generate graphs describing new poses of the object and visualize

them through an optimization based drawing technique.

7.1.4 Generative Models for Chemical Structures

In chapter 6 we considered the application of the generative models described previ-

ously to the domain of chemical structure. We combined aspects of both generative

models as well as new methods to form our approach. Due to chemical structure

being constrained by the laws of chemistry we needed to implement some method

of ensuring we only generated valid structures. This could be accomplished in a

number of ways that were outlined in section 6.1.2. The solution we selected ap-

proximated sampling from the input distribution by (a) taking a sample that would

probably represent an incorrect chemical structure (termed a quasi-molecule) and

(b) projecting this onto the nearest correct chemical structure. For this to work we

required a method of constructing a “projection” set of valid chemical structures that

would be as close to the generated quasi-molecules as possible. We also required a

method of computing the closest valid molecule to a quasi-molecule.

The construction of the projection set was solved by using the chemical frag-

ments contained in the molecules of the input set to construct it. By decomposing

each input molecule into its functional groups we could build new similar molecules

by combining the functional groups into a new molecule. This approach has its ori-

gins in the parts based approach described in chapter 5, chemoinformatics tools for

performing chemical structure elucidation and fragment based drug discovery. The

link to fragment based drug discovery also helps our method perform well in the

evaluation domain. By noting that the way drugs function at a target is largely due

to the functional groups they possess, we generated new candidates for the target by

combining the functional groups in previously unseen ways.

The second requirement of assessing the similarity between a molecule from the

projection set and a quasi-molecule is a harder problem than it appears. Since we

only have a vectorial description of the generated quasi-molecule we must ensure

the molecules from the projection set reside in the same vector space. The result
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of this is that the input molecules and projection molecules must all be placed in

a common alignment. However, due to the size of the projection set this is a chal-

lenging task. Furthermore, since the applicability of the method directly depends

on the diversity and size of the projection set, the alignment step must be efficient.

After considering a number of possible solutions we settled on performing a full

hierarchical alignment on the molecules from the input set and then aligning the

molecules from the projection set by slotting them into the most appropriate place in

the hierarchical alignment tree. The result of this was that each projection molecule

must only be aligned to each input molecule and therefore only a linear increase in

computation is seen when another molecule is added to the projection set.

The field of drug discovery is largely about exploring chemical space in a search

for candidate drugs against a specific target. The method we propose offers a way

of doing this. By noting that a drug’s function is largely determined by its structure,

if we populate the sample set with drugs for a specific target, we should expect

to generate chemical structures that also perform well with a specific target. To

evaluate this we used a docking program to simulate the interactions that take place

between a potential drug and the active site of a protein. We used two data sets, one

with drugs for the COX2 protein and another with drugs for the EGFR protein.

By measuring the affinity with which a molecule binds to an active site a score

was produced for each generated molecule. By comparing this score to the scores

from the input set and a set of randomly sampled molecules, we were able to show

that our approach does indeed seem to statistically generate new molecules with

properties similar to those in the sample set. While there is no guarantee these

chemical structures would be suitable as drugs, or even possible to synthesize in the

real-world, in our evaluation domain they performed well.

Furthermore, by comparing the scores of the generated molecules to the scores

of a random selection of molecules from the projection set we were able to gain

some measure of efficiency. In other words, this comparison gave an indication

of whether we were selecting the best subset of molecules from the projection set.

Some care must be taken with this measure since we would not expect to produce

molecules from areas of the projection set that perform well but are not represented

in the sample set. Nevertheless, in both the data sets we used we saw high efficiency.
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7.2 Future Work

For the work in mixing spectral representations of graphs we would like to extend

the experiments we performed on computing graph medians. Given the recent ad-

vances in methods for computing graph medians both exactly and approximately

we would like to experiment with larger graphs and larger sets of graphs to see if

our approach scales well. The deviation from the true generalized median as found

by an exact method would provide a good indication of the true performance of our

approach.

We would like to extend the work on vectorial generative models for graphs with

an investigation into why applying the orthogonal map to the dual spectral method

resulted in little improvement. In theory, it is not clear why it should reduce the

performance of the dual spectral method and indeed, we expected it to enhance the

performance.

The most pressing issue with the parts-based approach is the assumption that

subgraphs representing similar structure are connected similarly. In chapter 5 we

outlined a possible solution to this. In order to model a set of subgraphs which are

from the same cluster but are connected differently, we require another level of clus-

tering. This time the clustering would be performed on the connections between a

cluster pair. This would allow us to construct a mixture model over the connections

between a cluster pair thus representing all the different ways that particular cluster

pair can be connected. From this model a new set of connections could be sampled.

The applications of our generative models to chemical structure has many pos-

sible avenues of future work. We feel the most relevant would be to investigate

different ways of constructing the projection set. While the current method is suffi-

cient for our simple model of chemistry, any real world application of our approach

would require a more robust method of constructing the projection set.

This method could be one of the reaction transform approaches outlined in the

literature. In this method a medicinal chemist can specify the type of chemical struc-

tures that are to be produced and our model can then suggest the most statistically

significant ones in terms of the input set. Another approach would be to compute

a coarse set of similarities between the sample set and a large database of chemi-

cal structures, such as the ZINC library. Then the top x most similar structures for

example could be extracted and used to populate the projection set.
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[21] H. Bunke, A. Münger, and X. Jiang. Combinatorial search versus genetic

algorithms: A case study based on the generalized median graph problem.

Pattern Recognition Letters, 20(11-13):1271–1277, 1999.



BIBLIOGRAPHY 205

[22] T. Caelli and S. Kosinov. An Eigenspace Projection Clustering Method for

Inexact Graph Matching. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 26(4):515–519, 2004.

[23] R. E. Carhart, D. H. Smith, H. Brown, and C. Djerassi. Applications of

artificial intelligence for chemical inference. XVII. Approach to computer-

assisted elucidation of molecular structure. Journal of the American Chemi-

cal Society, 97(20):5755–5762, 1975.

[24] R. E. Carhart, D. H. Smith, N. A. B. Gray, J. G. Nourse, and C. Djerassi.

Applications of artificial intelligence for chemical inference. 37. GENOA: A

computer program for structure elucidation utilizing overlapping and alter-

native substructures. The Journal of Organic Chemistry, 46(8):1708–1718,

1981.

[25] R. E. Carhart, D. H. Smith, and R. Venkataraghavan. Atom pairs as molecular

features in structure-activity studies: definition and applications. Journal of

Chemical Information and Computer Sciences, 25(2):64–73, 1985.

[26] B. D. Christie and M. E. Munk. Structure generation by reduction: a new

strategy for computer-assisted structure elucidation. Journal of Chemical

Information and Computer Sciences, 28(2):87–93, 1988.

[27] F. Chung. Spectral graph theory. American Mathematical Society, 1997.

[28] D.E. Clark, M.A. Firth, and C.W. Murray. MOLMAKER: de novo generation

of 3D databases for use in drug design. Journal of Chemical Information and

Computer Sciences, 36(1):137–145, 1996.

[29] International Human Genome Sequencing Consortium. Finishing the euchro-

matic sequence of the human genome. Nature, 431(21):931–945, 2004.

[30] M. L. Contreras, R. Rozas, and R. Valdivia. Exhaustive Generation of Or-

ganic Isomers. 3. Acyclic, Cyclic, and Mixed Compounds. Journal of Chem-

ical Information and Computer Sciences, 34(3):610–616, 1994.

[31] D.A. Cosgrove and P.W. Kenny. BOOMSLANG: A program for combinato-

rial structure generation. Journal of Molecular Graphics, 14(1):1–5, 1996.



BIBLIOGRAPHY 206

[32] S. G. Dahl and I. Sylte. From genomics to drug targets. Journal of Psy-

chopharmacology, 20(4 Supplement):95–99, 2006.

[33] J. Drews. Drug Discovery: A Historical Perspective. Science,

287(5460):1960, 2000.

[34] J. Dugundji and I. Ugi. An algebraic model of constitutional chemistry

as a basis for chemical computer programs. Topics in Current Chemistry,

39(1):19–64, 1973.

[35] A. Etkin. Drugs and Therapeutics in the Age of the Genome. Journal of the

American Medical Association, 284(21):2786–2787, 2000.

[36] M. Ferrer. Theory and Algorithms on the Median Graph. Application

to Graph-based Classification and Clustering. PhD thesis, Universitat

Aut‘onoma de Barcelona, 2008.

[37] M. Ferrer, F. Serratosa, and A. Sanfeliu. Synthesis of median spectral graph.

Lecture Notes in Computer Science, 3523:139–146, 2005.

[38] M. Ferrer, F. Serratosa, and E. Valveny. Evaluation of spectral-based meth-

ods for median graph computation. Lecture Notes in Computer Science,

4478:580–587, 2007.

[39] M. Ferrer, F. Serratosa, and E. Valveny. On the relation between the median

and the maximum common subgraph of a set of graphs. Lecture Notes in

Computer Science, 4538:351–360, 2007.

[40] M. Ferrer, E. Valveny, and F. Serratosa. Bounding the size of the median

graph. Lecture Notes in Computer Science, 4478:491–498, 2007.

[41] M. Ferrer, E. Valveny, and F. Serratosa. Median graphs: A genetic approach

based on new theoretical properties. Pattern Recognition, In Preperation,

2009.

[42] M. Ferrer, E. Valveny, F. Serratosa, and H. Bunke. Exact median graph com-

putation via graph embedding. Lecture Notes in Computer Science, 5342:15–

24, 2008.



BIBLIOGRAPHY 207

[43] M. Ferrer, E. Valveny, F. Serratosa, K. Riesen, and H. Bunke. An approx-

imate algorithm for median graph computation using graph embedding. In

Proceedings of the 19th International Conference on Pattern Recognition,

pages 1–4, 8–11 Dec. 2008.

[44] M.A.T. Figueiredo and A.K. Jain. Unsupervised learning of finite mixture

models. IEEE Transactions on pattern analysis and machine intelligence,

24(3):381–396, 2002.

[45] K. Funatsu, N. Miyabayashi, and S. Sasaki. Further development of structure

generation in the automated structure elucidation system CHEMICS. Journal

of Chemical Information and Computer Sciences, 28(1):18–28, 1988.

[46] J. Gallier and D. Xu. Computing exponentials of skew-symmetric matrices

and logarithms of orthogonal matrices. International Journal of Robotics and

Automation, 17(4):10–20, 2002.

[47] V.J. Gillet, W. Newell, P. Mata, G. Myatt, S. Sike, Z. Zsoldos, and A.P. John-

son. SPROUT: Recent developments in the de novo design of molecules.

Journal of Chemical Information and Computer Sciences, 34(1):207–217,

1994.

[48] S. Gold and A. Rangarajan. A graduated assignment algorithm for graph

matching. IEEE Transactions on Pattern Analysis and Machine Intelligence,

18(4):377–388, 1996.

[49] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins

University Press, 3rd edition, 1996.

[50] W. H. Haemers and E. Spence. Enumeration of cospectral graphs. European

Journal of Combinatorics, 25(2):199–211, 2004.

[51] M. Hann and R. Green. Chemoinformatics - a new name for an old problem?

Current Opinion in Chemical Biology, 3(4):379–383, 1999.

[52] C.M.W. Ho and G.R. Marshall. DBMAKER: A set of programs to generate

three-dimensional databases based upon user-specified criteria. Journal of

Computer-Aided Molecular Design, 9(1):65–86, 1995.



BIBLIOGRAPHY 208

[53] J. Hser. High-throughput screening in drug discovery. Wiley, 2006.

[54] L. Hu, M. L. Benson, R. D. Smith, M. G. Lerner, and H. A. Carlson. Bind-

ing MOAD (Mother Of All Databases). Proteins: Structure, Function, and

Bioinformatics, 60(3):333–340, 2005.

[55] N. Huang, B. K. Shoichet, and J. J. Irwin. Benchmarking sets for molecular

docking. Journal of Medicinal Chemistry, 49(23):6789–6801, 2006.

[56] R.W. Irving. An Efficient Algorithm for the ”Stable Roommates” Problem.

Journal of Algorithms, 6(4):577–595, 1985.

[57] W. Jahnke and D. A. Erlanson. Fragment-based approaches in drug discov-

ery. Wiley, 2006.
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