
From SCADE to Lego Mindstorms

David White

Supervisor: Dr. Gerald Luettgen

3rd Year Project
Department of Computer Science

University Of York

Word Count: 22543, counted by WinEdt, all appendices excluded
70 Pages

March 18, 2004



Abstract

The synchronous approach to designing safety critical real-time systems al-
lows the notion of physical time to be replaced with an ordering among events.
One such language of this type is Lustre which allows control to be expressed
through dataflow equations. This language is used as the basis for an industry-
leading tool called SCADE. SCADE provides a graphical environment for ex-
pressing dataflow equations as well as the state based formalisms found in other
synchronous languages such as Esterel. In addition, C code can be automati-
cally generated from designs, and verification facilities exist for checking designs
for both expected and unexpected behaviour.

An implementation platform for SCADE designs would be a valuable tool to
aid in the teaching of synchronous reactive systems. The implementation plat-
form this project will assess is the Lego Mindstorms architecture, which com-
bines the capabilities of Lego as a construction set with an embedded computer
system called the RCX. When the RCX is used with the open source firmware
BrickOS, it can execute programs written in C. This project will demonstrate
a way of translating a SCADE design into C code that can be executed on the
RCX. Furthermore, two complex robots will be built and programmed high-
lighting important features of SCADE and exploiting Lego Mindstorms sensory
and actuatory potential.



Contents

1 Introduction 4

2 Literature Review 6
2.1 Reactive Systems and the Synchronous Approach . . . . . . . . . 6
2.2 Overview of Synchronous Formalisms and Languages . . . . . . . 7
2.3 Lustre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Language Overview . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 SCADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Lego Mindstorms and the RCX . . . . . . . . . . . . . . . . . . . 12
2.6 BrickOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7 A small development . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.2 Lego Design . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7.3 Lustre Design . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.4 SCADE Design . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Converting Synchronous Language Designs to Code Executable
on the RCX 19
3.1 Investigation into Lustre Compiling Options . . . . . . . . . . . . 19

3.1.1 The Automaton Environment Generated by Pollux . . . . 19
3.1.2 Previous Work on Lustre Compilation to Lego Mindstorms 21
3.1.3 New Perl Script for Lustre Compilation - legolus2 . . . . 26

3.2 Investigation into SCADE Compiling Options . . . . . . . . . . . 27
3.2.1 SCADE Design to Lustre v4 Format . . . . . . . . . . . . 27
3.2.2 Translating SCADE’s C Code to Executable Code on the

RCX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Evaluation of SCADE Compilation Methods . . . . . . . 29
3.2.4 Environment Generated by Lustre2C . . . . . . . . . . . . 29
3.2.5 SCADE2Lego Script - Usage and Description . . . . . . . 30
3.2.6 Testing of SCADE2lego . . . . . . . . . . . . . . . . . . . 31
3.2.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Communicating RCXs . . . . . . . . . . . . . . . . . . . . . . . . 32

1



3.3.1 Description of BrickOS Features Required for Communi-
cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 A Brick Sorting Robot 35
4.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Lego Design . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 SCADE Design . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Testing Methodology . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 A Line Following Robot with Obstacle Avoidance 47
5.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Lego Design . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Problem Analysis . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 SCADE Design . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Conclusion 65
6.1 Overview of Work Completed . . . . . . . . . . . . . . . . . . . . 65
6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A Code for Legolus2 70

B Code for SCADE2Lego 76

C Code for Communicating RCXs 84
C.1 Code for Master Brick . . . . . . . . . . . . . . . . . . . . . . . . 85
C.2 Code for Slave Brick . . . . . . . . . . . . . . . . . . . . . . . . . 87

D Complete SCADE Design for the Brick Sorter 88

E Complete SCADE Design for Line Follower with Obstacle Avoid-
ance 89

2



List of Figures

2.1 A robot following a line . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Methods for following a line . . . . . . . . . . . . . . . . . . . . . 14
2.3 Improved Lego robot specifically for line following . . . . . . . . 15
2.4 The SCADE node for following a line . . . . . . . . . . . . . . . . 17

3.1 A Flow diagram describing the operation of legolus . . . . . . . . 22
3.2 Flow diagram describing the behaviour of the main driving loop . 24
3.3 Different methods for translating a SCADE design to BrickOS code 28
3.4 A flow diagram describing SCADE2Lego’s operation . . . . . . . 30

4.1 Original Lego Brick sorter - [26] . . . . . . . . . . . . . . . . . . . 36
4.2 The Brick sorter with a sorting subsystem . . . . . . . . . . . . . 37
4.3 Sorter Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Bricksort Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.5 Sort Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 push brick node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 belt safety node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 A) input filter node, B) output filter node . . . . . . . . . . . . . 43

5.1 Different types of synchro drives . . . . . . . . . . . . . . . . . . 48
5.2 The robot capable of following lines and avoiding obstacles . . . 50
5.3 The obstacle avoidance algorithm . . . . . . . . . . . . . . . . . . 52
5.4 synchro node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 obstacle present node . . . . . . . . . . . . . . . . . . . . . . . . 55
5.6 state control state machine . . . . . . . . . . . . . . . . . . . . . 55
5.7 turn robot state machine . . . . . . . . . . . . . . . . . . . . . . 56
5.8 compute state node . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.9 turn control node . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3



Chapter 1

Introduction

Today, and indeed for the last 25 years, we entrust computers to take control
of safety critical systems. Safety critical systems are described as:

“A computer, electronic or electromechanical system whose failure may cause
injury or death to human beings.” - The Free On-line Dictionary of Computing

This definition entails the most important property of safety critical sys-
tems: they must function correctly. Nevertheless, there have been a number
of examples of such systems failing and with predictably catastrophic results.
Therac-25 was a machine for delivering radiation therapies and a software bug
made it very easy for the machine to deliver 100 times more than the correct
dose. Due to this, six patients received massive overdoses [25].

“In 1981, a software error caused a stationary robot to move suddenly and
with impressive speed to the edge of its operational area. A nearby worker was
crushed to death.” - Real-Time Systems and Programming Languages, Burns
and Wellings

With these grave accounts of such incidents, the liability falls on the engi-
neers who designed the system. Therefore, it is their responsibility to ensure
that the systems produced are safe. This can be addressed in two ways that
are not mutually exclusive: either provisions can be put in place so that when a
failure does occur it is handled gracefully or the system can undergo a rigourous
mathematical testing which can prove the system will not display any unex-
pected behaviour. Obviously the latter is a more desirable solution and an
approach known as the synchronous paradigm can provide this.

SCADE [15] is a state-of-the-art design tool for specifying reactive systems
using the synchronous approach. It provides a way to express dataflow equa-
tions graphically using a well-defined formalism based on the tool’s underlying
language; Lustre [1]. Furthermore, designs produced using SCADE may be
simulated and formally checked for desired and undesired behaviour. Code can
then be automatically generated in a high level language (such as C or ADA)
and compiled to an implementation architecture.

Lego Mindstorms [16] is the implementation architecture that will be used
for this project. The Lego “brick” provides a small embedded system (called the
RCX) that can take control of three sensors and three actuators. In addition,

4



using the open source firmware, BrickOS [20], C programs may be compiled to
the RCX’s architecture and executed. Hence, high-level designs produced in
SCADE can be passed through a compilation chain and eventually run on the
Lego Mindstorms platform.

This compilation chain has not been developed yet; however, there is some
preliminary work that allows designs produced using Lustre, to be compiled
for the BrickOS platform. Therefore, an aim of this project is to investigate
compiling methods for Lustre and SCADE designs so they can be executed
under BrickOS. The end goal of this is to develop the Lego Mindstorms platform
as a teaching aid for reactive systems. For this reason, the interface to the
compilation process must be simplified as much as possible. An investigation
into communication between multiple RCX’s will also be conducted since one
RCX by itself is quite limited in its input/output capabilities. The further aims
of the project are to build two robots: a brick sorter and a line follower with
obstacle avoidance. These will help to illustrate synchronous reactive systems
and further the research into using this system as a teaching aid.

The employed methodology for this project is the following: first the com-
pilation options for SCADE will be investigated since only designs specified in
Lustre can currently be compiled to the BrickOS platform. Once a SCADE com-
pilation route has been designed and implemented, the two robots will be built,
simulated (inside SCADE) and finally implemented using Lego Mindstorms.

The remaining report is structured accordingly. Chapter 2 contains a liter-
ature review exploring all the relevant topics that apply to this project. This
includes: reactive systems, Lustre, SCADE, Lego Mindstorms and BrickOS. A
tiny, but complete development will be shown at the end to clarify and consol-
idate the topics discussed in the literature review. Chapter 3 will analyse the
previous work conducted on compiling a Lustre design to BrickOS compatible
code before discussing the various options available for performing the same
operation on a SCADE design. This chapter will also investigate the afore-
mentioned communication between multiple bricks and the impact this has on
the synchronous approach. Chapters 4 and 5 will describe the two robots con-
structed: a brick sorter and line follower with obstacle avoidance, respectively.
The chapters detail the problem analysis, design, implementation, testing and
evaluation for each robot. Chapter 6 concludes the project and discusses some
further work that could be carried out in the field.

5



Chapter 2

Literature Review

2.1 Reactive Systems and the Synchronous Ap-
proach

Reactive systems were first introduced in [11, 12]. Benveniste and Berry [2]
make the distinction between real-time and reactive systems by defining reac-
tive as “a system that maintains a permanent interaction with its environment”
where as a real-time system is in addition “subject to externally defined timing
constraints”. The definition given by Halbwachs [6] helps to further define reac-
tive systems: “Reactive systems are computer systems that continuously react
to their environment at a speed determined by this environment”. Halbwachs
introduces this definition to distinguish reactive systems from transformational
systems (systems where the inputs are available at the beginning and an output
is available on termination) and interactive systems (systems that continually
interact with an environment, but at their own rate).

A reactive system has the following main characteristics [6]: firstly, they
involve a large amount of concurrency. That is, a large amount of outputs need
to be produced determined by a large amount of inputs, possibly all at the same
time. Thus it is convenient to think of this in terms of interacting tasks. This
characteristic points towards the systems often being implemented in terms of
parallel components. Secondly, they are subject to strict time requirements,
which include the frequency at which inputs should be sampled and the delay
from a stimulus to a reaction being produced. Uses for reactive systems include:
industrial process control systems, transportation control / supervision systems
and signal processing systems. The areas of use imply the most important char-
acteristic: reliability and dependability, since most of the systems implemented
using this model will be highly safety critical.

Halbwachs [6] outlines some different approaches to building reactive sys-
tems: communicating finite state automata, petri net based models, task based
models and communicating processes. However, none of these approaches will
be explored any further since this project is based around the synchronous ap-
proach. The synchronous paradigm raises the level of abstraction to a state
where a program can be considered as responding instantaneously from its in-
puts. That is, outputs are produced synchronously with their inputs [2]. This
has a profound impact on the idea of time: physical time is replaced by the

6



notion of an order among events. In turn, this has implications for proving
properties of the program, by removing the need to consider physical time
the complexity of proofs are greatly reduced. However, for the synchronous
paradigm to be used, the synchronous hypothesis must be upheld: that the pro-
gram can react quickly enough to perceive all external events in suitable order -
[6]. This means that the maximum time to compute outputs from inputs must
be less than the granularity of abstract time being considered. Thus for the
synchronous hypothesis to be correctly applied, its maximum possible reaction
time must be less than the rate at which inputs have to be sampled.

2.2 Overview of Synchronous Formalisms and
Languages

There are two main formalisms within the synchronous paradigm: dataflow and
state based. The dataflow model [8, 9] (otherwise known as multiple clocked
recurrent systems) works on the idea that outputs are defined as equations based
on the inputs. It contains no implicit notion of state. Incoming data is simply
transformed in a certain way and then provided at the outputs. Dataflow is
normally thought of being asynchronous however, if each operator is considered
to take zero time the system can be considered synchronous. This lends itself
to the declarative programming style and the two languages based on it, Lustre
(section 2.3) and Signal [6], are both declarative.

State based formalisms, on the other hand, use an automaton as a means of
control with changes occurring when transitions are followed to different states.
This is the idea behind the imperative language Esterel [10] which uses a front-
end called SyncCharts to specify the behaviour of the program. Obviously,
there is an implicit notion of state in this model. Hence the two models are
very different and each is targeted to provide a solution to a different set of
problems. Dataflow for when data must be continuously monitored, transformed
and reacted to and state based when the system must follow some control flow
pattern.

Recently, advances in combining the two formalisms have been made. SCADE
dataflow models can have Safe State Machines [29] (an improvement on Sync-
Charts) embedded in them. A full discussion of this is left to the section on
SCADE (2.4).

2.3 Lustre

2.3.1 Introduction

Lustre [1] is a language based on the dataflow model that adheres to the syn-
chronous paradigm. Since dataflow modelling is normally in the domain of con-
trol theorists it is not a language designed for computer scientists. Providing
the design problem fits well into the dataflow model, there are many advantages
to be gained by using such a language for design. Firstly, the dataflow model
is inherently parallel. Moreover, it is a fine grained parallelism, meaning as
soon as an operator is provided with inputs its output can be computed. Thus,
the only synchronisation constraints come from dependencies between the data.

7



Secondly, the language contains no side-effects meaning that it is mathemati-
cally cleaner. This in turn implies, once again, that the complexity of program
proofs are significantly reduced. Furthermore, the dataflow model supports hi-
erarchical decomposition. This results in solutions being more comprehensible
if suitable abstraction is used to assemble operators into logical groups. Lastly,
it allows the combination of textual and graphical notations (although there is
no standard graphical notation). This is desirable since some subsystems are
best described using a textual notation and some graphically.

2.3.2 Language Overview

A short overview of the language of Lustre will now be presented. This is
adapted from [1, 3, 4, 5, 6, 7] - for a detailed explanation of the language one
of these references should be consulted.

Lustre is a language based on clocks, the base clock is the finest division
of time perceivable inside the program. Slower clocks can then be built on
top using clock altering operators. Any variable or expression is defined by a
flow, this is made up from a sequence of values (which may be infinite) and a
clock, which identifies its value (a member of the sequence) at a certain instant.
Constant values are flows on the basic clock with an infinite sequence where all
elements are the same. Sequences can be of type integer, boolean or real and a
tuple constructor is provided for making combinations of the elementary types.

A variable or output must be assigned to exactly once as this will determine
its value for the cycle. This introduces the substitution principle which is a key
idea in Lustre. For any assignment A = E where E is an expression, any use
of A may be replaced with E with no change to the program semantics. The
converse of this also applies. Furthermore, the definition principle states that
the behaviour of A must be completely defined by the equation and the values
of the variables contained within it. Problems with causality are avoided by
insisting that a variable/output must not instantly depend on itself.

As in other languages, complex expressions are built up from operators.
Operators can only be applied to operands on the same clock. This seemingly
limiting requirement is resolved by providing operators that alter the clock of a
flow, as described below.

First, two operators will be outlined that change the value of a flow produced
on a particular clock instant. The PRE operator, when applied to a flow, will
have the value that the flow had on the previous clock instant. If A is a sequence
(a1, a2, a3, ...) then PRE (A) is the sequence (nil, a1, a2, a3, ...). Here nil is
used to indicate an undefined value since there is no previous value for A at
the first instance. To resolve this problem, PRE is often used with -> operator
(named the “followed by” operator) which is used to define initial values for a
sequence. If B is the sequence (b1, b2, b3, ...) then B -> A is (b1, a2, a3, ...)
more relevantly, B -> PRE(A) is (b1, a1, a2, a3, ...).

Now operators that change the clock of a flow will be discussed. The when
operator is used to slow down the clock of its first argument according to the
second argument. For this to make sense the second argument must be a clock (a
boolean valued flow). The current operator is used to project a slower clocked
flow onto a faster one. The operator gives the slower flow a value when its clock
is false equal to its value the last time its clock was true. These operators are

8



B true false true false true

(0, 1, false) when B (0, 1, false) (0, 1, false) (0, 1, false)

COUNTER((0, 1, false) when B) 0 1 2

COUNTER(0, 1, false) 0 1 2 3 4

(COUNTER(0, 1, false)) when B 0 2 4

Table 2.1: The effect of when and current operators on node parameters - [4].

illustrated in Table 2.1 however, for this table to make sense the concept of a
node must first be introduced.

Lustre program structure is provided by node declarations. One or more
equations of the form A = E can be composed into a single node and used in
higher level expressions. A node is declared using: an interface specification
(lists inputs/outputs, their types and possibly their clocks) and a system of
equations that defines node outputs and any local variables in terms of the
inputs. An example COUNTER node from [4] is shown below. This node increases
its output by incr value on each cycle starting from init value and returns
to init value when reset is true.

node COUNTER (init_value, incr_value: int; reset: bool)
returns (N: int);

let
N = init_value -> if reset then init_value

else PRE(N) + incr_value;
tel.

With this and the clock operators in mind, it becomes clear that solutions
must be structured in terms of clocks, which is the other use for operators that
change the clock of a flow. For example, if an output needs to be updated
only at certain times, then the clock of the expression to determine the new
output should only be true at these certain times. Taking this further, node
computation can be controlled by clocks too. In accordance with the data flow
point of view, a node’s basic clock is defined by the clock of its input parameters.
This means that the expression COUNTER( (0, 1, false) when B) only counts
when B is true. Whereas for the expression (COUNTER(0, 1, false)) when B
only the output is filtered (Table 2.1). Interestingly, a node can take parameters
that are on several different clocks providing this is specified in the declaration
and the different clocks are provided as parameters.

In the latest version of Lustre programs can make use of arrays and recur-
sion for structuring [7]. It should be noted that these new constructs are just
syntactic sugar - they do not actually provide any increase in the expressive
power of the language. Before the program is compiled, arrays are expanded
into as many variables as they have elements and recursive nodes are unfolded
into regular nodes. Because of this arrays must be indexed by, and recursion
bounded by, compile-time expressions. It is also possible to take slices of ar-
rays and these are often used with polymorphism. This allows computations on
arrays to be expressed in a concise manner.

9



2.3.3 Compilation

Static verification in Lustre consists of clock consistency checking. At compile
time each expression is associated with a clock. It then uses this to check that
every operators arguments are on a suitable clock. This is defined by [6]:

• any basic operator with more than one argument is applied to operands
on the same clock

• the clocks associated with actual parameters of any node instantiation
satisfy the constraints imposed by the node interface

Theoretically, two clocks are equivalent if they are defined by the same
boolean flow. However, testing the equality of two boolean flows is undecid-
able so Lustre considers a more restrictive form of equality. It defines two flows
to be on the same clock if they can be made identical by repeatedly applying
syntactic substitutions. It should be noted that these rules satisfy the definition
principle: the clock of a variable cannot be inferred from the use of the variable.
This means that Lustre can sometimes claim two clocks different when in fact,
if it took the context of the usage into account, they could be proved equal.

Code generation for a Lustre program is a translation to a high level language
(C / ADA). First, the compiler recursively expands each node call in the source
program. With suitable renaming of parameters, variables and clocks this leaves
a “flat” program from which code generation can proceed.

Next, using a synthesis borrowed from Esterel compiling techniques, it is
possible to compile Lustre code into an automaton where the control is produced
by simply calling an automaton step procedure at each instance of the base clock.
This yields the following overall structure of the main wrapping program [6]:

Initialisations
infinite loop

input handling
calls to input procedures
call to the automaton step procedure

(this will call some output procedures by itself)
end loop

Automaton generated by Lustre are encoded in a standard OC [24] format
which it shares with Esterel and Argos. This enables a whole host of tools and
utilities to work for most synchronous languages. These utilities include: code
generators (to C/ADA), automaton minimises, verification tools, display tools,
graphic interface generators (so the wrapping code shown above does not have
to be produced until implementation) and distributed code generators.

2.3.4 Verification

For verification to be possible it should be noted that the correctness of a pro-
gram does not depend on the program in its entirety but rather as a small set
of properties that the program should always fulfill. Moreover, many of these
properties are “safety properties” that describe states that the program should
not be in. These are the opposite of liveness properties which state that some

10



condition should appear in the future. Obviously safety properties are far eas-
ier to prove than liveness properties and some of the concrete reasons for this
will be discussed. Safety properties can be verified by checking the properties
of all reachable states - this allows the use of already mature reachability algo-
rithms. They can also be checked compositionally which reduces the complexity
of proofs and since a Lustre program is built in a modular way, they combine
well.

Specifying safety properties for Lustre programs is particularly easy because
they can be specified in terms of the language itself. For example if the safety
property P is expressed by a boolean expression B, then P holds if and only if B
holds true during any execution of the program. This can be easily specified in
terms of the Lustre language itself using the assertion mechanism. [5] provides
more details on this.

After safety properties have been specified, verification proceeds by analysing
the control automaton (state graph) built by the compiler and checking on this
graph that each property is upheld. The only problem with this method is that
the state graph may become very large but if this is the case then there are
techniques to reduce its size while retaining the information needed to prove
the properties. This problem is investigated in [6].

2.4 SCADE

SCADE is an industry-standard tool that provides an integrated development
environment for designing synchronous reactive systems. The underlying for-
malism used in SCADE is Lustre’s dataflow equations and node view. These
nodes may be expressed either graphically or texturally and both formalisms
may be interchanged.

Surprisingly, the other synchronous formalism mentioned in section 2.2 is
available in SCADE: safe state machines. These have been used in the Esterel
language for a long time however, only recently due to the work of Charles
Andre [29] they have been successfully integrated into a dataflow design tool like
SCADE. At the moment their mode of operation is somewhat limited since they
can only be implanted in a dataflow design, the reverse is not possible meaning
that a safe state machine cannot have a subpart expressing dataflow equations.
All the expressive power of Esterel Studio’s safe state machines remains intact in
SCADE. Thus this new combination of the formalisms is a very powerful design
tool. SCADE also offers a state machine formalism however, this is depreciated
now by safe state machines and should only be used for expressing very simple
machines (with less than 15 states - [21]).

Another feature of SCADE is its simulation mode. Here, a design may
be simulated by letting the user enter input values and then stepping the cyclic
function both back and forward. Furthermore, if the design was expressed using
the graphical formalism then intermediate output values can be seen after every
operator in the network. Also, if the design consists of sub nodes and these too
were designed graphically, then all the input, output and intermediate values of
these nodes are available to the user. Breakpoints and graphs of variables over
time are also offered to further aid debugging.

SCADE supports automatic code generation to C and ADA. The code pro-
duced by SCADE is similar to that of the Lustre compiler, however it differs

11



with its dealings of constants, data types and the working of the cyclic function.
It should be noted that a SCADE design is first translated into Lustre and then
translated into a high-level language. However, this intermediate Lustre code
is a sort of pseudo-Lustre and does not adhere to the v4 Lustre language [24].
This will be investigated further in chapter 3.

An operator will be used frequently in SCADE designs called the conditional
activation operator. This is similar to a Lustre current operator followed by a
when operator, i.e. it activates a node only when its clock is true, and it provides
the last value output when the clock is false.

2.5 Lego Mindstorms and the RCX

Lego Mindstorms [16] is the latest product to be produced by Lego. It is rad-
ically different from all previous Lego products since it allows Lego models to
be computer-controlled. At the heart of Lego Mindstorms is the RCX. This
brick is a small battery-powered computer system capable of controlling three
actuators and reading three sensors.

The RCX has been described in a hierarchy of four layers [13]: hardware,
system ROM, firmware and user programs. At the hardware layer the CPU con-
trolling its operation is a Hitachi H8 series microcontroller. This CPU provides
serial I/O, ADC and built-in timers. It contains 16KB of internal ROM which
stores the system ROM, and a further 32KB of static RAM which is used to
hold the firmware, any user programs currently on the device and the runtime
environment of a program when it is running. Aside from the three output ports
already mentioned, which may be connected to any Lego output device (buzzer
or motor), the RCX has built-in: a LCD, four buttons and a speaker. It also
provides an IR (infrared) interface which is used to download user programs to
the RCX and in more complicated situations, provide communication between
multiple RCXs. The three input ports can each have a Lego sensor connected.
There are two different types of Lego sensors available: passive and active.
Passive sensors do not require power and these include touch and temperature
sensors. On the other hand, active sensors must be powered to work correctly.
Active sensors in the Lego range are light and rotation sensors. There has been
much experimentation with so-called “homebrew” sensors. [13, 19] describe how
to make some of these more elaborate sensors.

The system ROM layer provides convenient methods for accessing the RCX’s
hardware. Furthermore, it also allows a firmware to be run on top of it (as in the
case of the standard firmware) but if desired, the firmware can take full control of
the RCX and bypass the system ROM layer (this is what BrickOS (section 2.6)
does). Thus the firmware layer provides the capability for custom firmwares
to be loaded onto the RCX. Currently, the custom firmwares available are:
BrickOS, pbForth [17] and leJOS [18]. BrickOS supports the C programming
language, pbForth the forth language and leJOS supports a JVM allowing Java
programs to be run.

12



2.6 BrickOS

BrickOS [20] (formerly known as LegOS) is an open source replacement operat-
ing system for the RCX. It boasts a number of features that make it considerably
more complex than the standard Lego firmware. Foremost, it allows programs
written in the C programming language to be executed on the RCX. Obviously
this is especially important for this project since SCADE is capable of auto-
matically generating C code as a target language. Furthermore, programs run
under BrickOS are executed natively rather than interpreted byte codes which
is the method of the standard firmware. In turn this allows faster execution of
programs. Another feature BrickOS presents that keeps it in the operating sys-
tem domain is priority based preemptive multitasking. Synchronisation between
multiple processes is possible with built-in support for POSIX semaphores.

Control of the RCX’s hardware using BrickOS is on a much lower level than
in the standard firmware. BrickOS provides a much finer control of outputs,
for example, allowing the speed of motors to be adjusted over 255 values. Fur-
thermore, when controlling the LCD every segment can be switched on or off
independently. BrickOS also provides access to the RCX’s internal speaker. Al-
though this output is not nearly as useful as the others, it can aid in debugging
since the LCD is quite limited in what it can display.

The value of sensors can either be taken as raw or adjusted. Raw mode offers
the greatest sensitivity however it is often unnecessary accurate and adjusted
sensors already have their value translated into a meaningful reading. Apart
from offering support for the four standard RCX sensors (touch, light, rotation
and temperature) it also allows usage of buttons on the RCX itself. The buttons
it provides access to are view and program. This effectively gives the RCX two
more touch sensors.

Program control in BrickOS is provided by two features: sleep and wait event.
The sleep functions are simple - they tell a thread to stop executing for a certain
amount of time and then resume. The wait event function is more complicated.
It takes a function which returns a boolean value and then repeatedly calls this
function until it returns true. At this point execution of the thread continues.

The last feature of BrickOS to be discussed is the LegOS Network Protocol
(LNP). This provides a means for two or more RCXs to communicate. A com-
puter may also participate using the program download tower. This protocol
has two layers, an integrity layer and an addressing layer. The integrity layer
guarantees that if a message is received it will be the same message that was
sent. This is much like the Internet protocol UDP. However, it differs from UDP
in that it is a broadcast mode – any RCXs in the receiving area will pick up the
message. To provide directed messages the addressing layer is placed on top of
the network protocol stack. Each RCX has a unique identifier that is specified
when the BrickOS firmware is downloaded. Then when a message is sent, the
recipients identifier is included and the message will only be received by that
RCX.

2.7 A small development

This section will describe a small but complete development of a synchronous
reactive system combining all the topics addressed during this literature review.

13



Figure 2.1: A robot following a line

The reactive system in this case will be a line following robot. The design
will be expressed in Lustre data flow equations and, alternatively, as a SCADE
graphical node.

2.7.1 Problem Analysis

Line following is a classic robotic challenge [14] (figure 2.1). There are many
ways to accomplish this, varying in complexity as well as resources needed. The
most simple in terms of resources is a robot with only one light-sensitive device.
To follow a line that may turn in both directions using one light sensor, it is

Figure 2.2: Methods for following a line

14



Figure 2.3: Improved Lego robot specifically for line following

necessary to zigzag along the line as shown in figure 2.2(a). However, if two
light-sensitive devices are available then a much simpler method can be used
(figure 2.2(b)). This relies on a light sensor being placed over each edge of the
track. When a sensor detects that it is no longer over the track, the robot
is instructed to turn in the relevant direction. This continues until the robot
rejoins the track with the sensor over the edge again. For this to work correctly
the track must uphold certain properties such as a constant thickness and a
limit in the sharpness of its turns. Since only a simple robot is desired in this
section for means of clarifying the methodology, the solution using two light
sensors will be implemented.

2.7.2 Lego Design

The robot is based on a design from the Lego Mindstorms user guide [26]. This
provides a robot with two sets of independently powered wheels, which allows
it to move forward, back, turn left and turn right. Some alterations have been
made from the original design. The first is to reduce the turning circle of the
robot enabling it to follow tracks with tighter turns. This has been done by
bringing the front wheels closer together and replacing the rear wheels with a
caster (figure 2.3). Also, the original design provides room for only one light
sensor. For this design it is necessary to have two light sensors and they must
be positioned so that the photo sensitive parts are precisely over the edges of
the tracks. For identical turns to be performed in both directions, the centre
of the robot must pass directly over the centre of the line, therefore presenting
no bias to either side. To obtain this precise positioning, the light sensors are
mounted on an axle at the front of the robot. This way the light sensors can be

15



arranged without having to adhere to the Lego “bumps” positioning system.

2.7.3 Lustre Design

node followline (
touch_1: bool;
touch_2: bool;
touch_3: bool;
light_1: int;
light_2: int;
light_3: int;
rotation_1: int;
rotation_2: int;
rotation_3: int

)
returns (

Forward_A, Back_A :bool ;
Speed_A : int;
Forward_B, Back_B :bool ;
Speed_B : int;
LCD_INT : int;

);

let
Forward_A = true
Forward_B = true
Back_A = if (light_1 > 40) then true else false
Back_B = if (light_3 > 40) then true else false
Speed_A = 255
Speed_B = 255
LCD_INT = (light_1 * 100) + light_3

tel.

The Lustre design has an unnecessarily complex interface. This is so it is
compatible with the compilation process that will be described in section 3.1.
With the exception of Back_A and Back_B, all motor outputs are fixed. Since
Forward_A and Forward_B are fixed to true, the motors can only be in one of
two states: forward or floating. These are purely determined by the value of the
light sensor that corresponds to a motor (i.e. the left light sensor can turn off
the right motor). When the light sensor reading rises above a certain threshold,
the corresponding wheel is switched off allowing the robot to turn. As soon as
the light sensor reading drops below the threshold, the motor is turned back on
and the robot resumes a straight-line course.

2.7.4 SCADE Design

It can be seen from figure 2.4, that the SCADE design is identical to the Lustre
design simply expressed using a graphical notation.

16



Figure 2.4: The SCADE node for following a line

2.7.5 Implementation

As briefly mentioned earlier, these designs were implemented using the compila-
tion methods discussed in chapter 3. Therefore this part of the mini project will
be omitted. After reading chapter 3, it will be clear how the tools developed in
that section can be applied to this situation.

2.7.6 Evaluation

This section has provided the reader with a brief overview of the content of
the project. It has shown how a reactive design is produced and although the
compilation to executable code has been omitted, it is simply a case of executing
a script. A simple Lego robot has also been described, highlighting the use of
light sensors and motors as well as the mapping between the usage of motors in
a reactive design and in BrickOS.

Moreover, this section has shown the benefits of using the synchronous
paradigm to design reactive systems. It is undeniable that the designs pre-
sented above are exceptionally simple and as such this is a testament to the
power of the synchronous paradigm as a design tool. The C program capable of
performing the same task would undoubtedly be longer, harder to understand
and it certainly could not be simulated or verified as easily.

The reader should also have a feel for the similarities between a Lustre
textual design and a SCADE graphical design. Of course this is unsurprising
since the underlying language of SCADE is Lustre. Therefore, this example
shows that for simple problems, Lustre and SCADE designs will be identical.

17



It should be noted that this does not hold for complex designs, such as those
involving conditional activation.

We will now proceed to investigate the compilation of synchronous languages
to Lego Mindstorms; the first main contribution of this project.

18



Chapter 3

Converting Synchronous
Language Designs to Code
Executable on the RCX

Creating a robust methodology for translating SCADE and Lustre designs into
code executable on the RCX is one of the main aims of this project. Previous
work has already been conducted on Lustre to BrickOS translation [22] but
SCADE to BrickOS translation has not been investigated yet. Creating a suc-
cessful SCADE translation tool will greatly increase the RCX’s usefulness as a
teaching aid for synchronous reactive systems and enable the robots built later
in the project to be programmed using SCADE.

3.1 Investigation into Lustre Compiling Options

To understand the compilation of Lustre to Lego Mindstorms, it is first necessary
to examine the output produced by the Lustre compiler. Compilation of a Lustre
program has already been briefly mentioned in section 2.3.3 but for further
clarity it will briefly be repeated here. A Lustre design is implemented as a
finite state automaton, the benefits of this being a small program with a bounded
execution time. To create C code from a Lustre design, two programs from the
Lustre suite are needed: lustre and poc. The design is first compiled into the
OC intermediate language format [24] using the tool called lustre. Then poc or
Pollux [24] is used on the OC language to generate the automaton environment.
An overview of the code Pollux creates will now be presented.

3.1.1 The Automaton Environment Generated by Pollux

The environment of the automaton (or context) is stored using a structure. This
contains the current state of the automaton as well as variables used to hold
input and output values.

typedef struct {
void* client_data;
int current_state;

19



_boolean _V0;
_boolean _V1;
_boolean _V2;

} line2_ctx

As can be seen, Pollux uses self defined types for its variables such as
_boolean to make its environment as unique as possible. In this example, _V1
will hold the first input value of the system and _V2 the first output value of
the system. The variable _V0 is used to keep track of when an input is updated,
as will be seen in the next example.

void line2_I_touch_1(line2_ctx* ctx, _boolean __V){
ctx->_V1 = __V;
ctx->_V0 = _true;

}

The input procedures are generated automatically. This is so that the par-
ticular internal variable of the context that an input relates to only needs to
be known to the compiler. Thus all the user must know are the names of these
procedures and not the internal structure of the automaton context. For this
reason the name of the input procedure is generated in a fixed form: the first
part is the name of the main node, followed by an _I_ (standing for input)
and lastly the name of the input as specified in the design. The automaton
context and value of the input are passed to the procedure which then updates
the context with the value.

Before the automaton can be used it must first be initialised. This is accom-
plished using the following procedure:

void line2_reset(line2_ctx* ctx){
ctx->current_state = 0;
line2_reset_input(ctx);

}

This procedure is passed the context of the automaton and then proceeds
to set the automaton to its initial state. After this it calls the input reset
procedure.

static void line2_reset_input(line2_ctx* ctx){
ctx->_V0 = _false;

}

This updates the context to reflect the fact that no inputs have been pro-
cessed yet. Now that all the supporting code for the automaton has been ex-
amined, the transition function (or step procedure) will be explained:

void line2_step(line2_ctx* ctx){
switch(ctx->current_state){
case 0:

ctx->_V10 = _true;
line2_O_Forward_A(ctx->client_data, ctx->_V10);
ctx->_V11 = _false;

20



...

...
ctx->current_state = 0; break;

break;
}
line2_reset_input(ctx);

}

Only one transition function is produced since, as stated in section 2.3.3,
compilation starts from a “flat” program, containing only one node. It is im-
plemented as a case statement, simply switching on the current state of the
automaton. After enough computation has been performed to determine the
value of an output, an output procedure for communicating this to the outside
world is called. This then continues for all outputs. At the end, the input reset
procedure is called to store the fact that the inputs must be updated before the
step procedure is called again. This can be used to check that inputs are sampled
frequently enough and therefore test the synchronous hypothesis. The output
procedures are prototyped by the compiler although ultimately they must be
implemented by hand. It is necessary for the automaton step procedure to call
the output procedures since only it knows which variable in the context relates
to an output. In the same style as the naming for input procedures, the output
procedure names are generated automatically so that the step procedure knows
how to call them.

extern void line2_O_LCD_INT(void*, _integer);

void line2_O_LCD_INT(void* cdata, _integer v)
{lcd_int((unsigned) v);}

A further two functions are automatically generated by Pollux, the first
for dynamic allocation of the context and the second for copying a context.
Neither of these two functions is used in the implementation, so they will not
be explained any further.

3.1.2 Previous Work on Lustre Compilation to Lego Mind-
storms

Christophe Mauras [22] has already conducted some work involving the trans-
lation of a Lustre design to code executable on the RCX. Most of the compiling
work conducted in this project stems from what Mauras has done and as such
an overview of his work will now be presented.

The compilation procedure centres around a Perl script legolus, which first
calls the necessary programs to compile Lustre to C (lustre followed by poc -
section 3.1). It then selectively extracts parts of the C code and incorporates
this into a new file containing the wrapping code necessary to support a Lustre
reactive kernel. The parts extracted are listed above in section 3.1.1 and hence
the wrapping code only consists of output procedures and the driving loop
procedure. The full process is shown in figure 3.1.

The main node definition in the Lustre program must adhere to the following
format:

21



Figure 3.1: A Flow diagram describing the operation of legolus

node nodename (
capteur_1: bool; -- touch sensor connected to port 1
capteur_2: bool; -- touch sensor connected to port 2
capteur_3: bool; -- touch sensor connected to port 3
lumiere_1: bool; -- light sensor connected to port 1
lumiere_2: bool; -- light sensor connected to port 2
lumiere_3: bool; -- light sensor connected to port 3
rotation_1: int; -- rotation sensor connected to port 1
rotation_2: int; -- rotation sensor connected to port 2
rotation_3: int -- rotation sensor connected to port 3

)
returns (
Avant_A, Arriere_A :bool ; -- Avant_A - Forward_A, Arriere_A - Back_A
Vitesse_A : int; -- Vitesse_A - Speed_A (between 0 and 255)
Avant_B, Arriere_B :bool ;
Vitesse_B : int;
Avant_C, Arriere_C :bool ;
Vitesse_C : int;
Affichage_0 : int; -- Control character 0 on LCD
Affichage_1 : int; -- Control character 1 on LCD
Affichage_2 : int; -- Control character 2 on LCD
Affichage_3 : int; -- Control character 3 on LCD
Affichage_4 : int; -- Control character 4 on LCD
Affichage_5 : bool; -- Control character 5 on LCD (sign of number)

22



Seuil_1 : int; -- Value above which lumiere_1 will report true (0..100)
Seuil_2 : int; -- Value above which lumiere_2 will report true (0..100)
Seuil_3 : int -- Value above which lumiere_3 will report true (0..100)
);

As can be seen, for simplicity the program considers each type of sensor
available to each port whereas, obviously, only one sensor can be used with each
port. This is so that the input handling part of the system can be done using
the same piece of code no matter which sensors are connected to which ports.

The main driving loop will now be considered. This is responsible for ini-
tialising the system, timing the base clock, handling inputs and calling the
automaton step procedure. Its functionality is shown in figure 3.2 and the code
is detailed below.

main(){
time_t temps_systeme = get_system_up_time();
line1_reset(&the_ctx);
dir_A = 3; dir_B = 3; dir_C = 3;
first_A = 1; first_B = 1; first_C = 1;
seuil_1 = 50; seuil_2 = 50; seuil_3 = 50;
ds_active(&SENSOR_1);
ds_active(&SENSOR_2);
ds_active(&SENSOR_3);
ds_rotation_set(&SENSOR_1, 0);
ds_rotation_set(&SENSOR_2, 0);
ds_rotation_set(&SENSOR_3, 0);
ds_rotation_on(&SENSOR_1);
ds_rotation_on(&SENSOR_2);
ds_rotation_on(&SENSOR_3);
while(1){
if (SENSOR_1<0xf000)
{line1_I_capteur_1(&the_ctx, _true);}

else
{line1_I_capteur_1(&the_ctx, _false);}

if (SENSOR_2<0xf000)
{line1_I_capteur_2(&the_ctx, _true);}

else
{line1_I_capteur_2(&the_ctx, _false);}

if (SENSOR_3<0xf000)
{line1_I_capteur_3(&the_ctx, _true);}

else
{line1_I_capteur_3(&the_ctx, _false);}

if (LIGHT_1 > seuil_1)
{line1_I_lumiere_1(&the_ctx, _true);}

else
{line1_I_lumiere_1(&the_ctx, _false);}

if (LIGHT_2 > seuil_2)
{line1_I_lumiere_2(&the_ctx, _true);}

else
{line1_I_lumiere_2(&the_ctx, _false);}

23



Figure 3.2: Flow diagram describing the behaviour of the main driving loop

if (LIGHT_3 > seuil_3)
{line1_I_lumiere_3(&the_ctx, _true);}

else
{line1_I_lumiere_3(&the_ctx, _false);}

line1_I_rotation_1(&the_ctx, ROTATION_1);
line1_I_rotation_2(&the_ctx, ROTATION_2);
line1_I_rotation_3(&the_ctx, ROTATION_3);
line1_step(&the_ctx);
msleep((int) 10 - (get_system_up_time() - temps_systeme));
temps_systeme = get_system_up_time();

}
}

The procedure begins by resetting the automaton context. It then executes
some BrickOS specific commands enabling the sensors to work in all different
modes. This is to do with the port overloading discussed above. Since BrickOS
operates at such a low level it enables the program to consider having three
different sensors permanently attached to the same port. Therefore, for the
correct sensor attached, a meaningful value will be generated and stored in the
automaton context. Next, a non-terminating loop is begun which is responsible
for stepping the automaton at the right time with the system inputs present
when this occurs. It does this by calling the input procedures that were auto-
matically generated by Pollux. It then steps the automaton, pauses execution
such that each cycle of the loop will take 10 milliseconds and resumes for an-
other iteration. Observe that the step procedure will call the output functions.
The cyclic delay (default 10ms) can be changed by replacing the 10 in the line

24



Forward A Back A Resulting direction
F F Floating
F T Back
T F Forward
T T Brake

Table 3.1: Values of Forward A and Back A and the corresponding motor di-
rection

below with the desired cyclic delay.

msleep((int) 10 - (get_system_up_time() - temps_systeme));

The touch and rotation sensors are handled in the expected way: the touch
sensor returns a value of true or false, and the rotation sensor returns a signed
integer indicating the revolution count. However, the light sensor is interpreted
in a non-standard way, as a boolean. This is accomplished by using an output to
set the threshold at which the light sensor input should provide a true reading,
therefore determining the light sensor value in the input processing part of the
driving loop.

Motor outputs are handled in a straightforward way. Since BrickOS allows
motors to be in four states it makes sense that these should be handled by
two boolean variables, forward_<motor_letter> and back_<motor_letter>.
Table 3.1 shows the resulting motor state (forward, back, floating1 and brake),
determined from the value of the variables forward and back. It is in the imple-
mentation where the motor procedure calls become complex. This complexity
arises since the order in which the Forward and Back output procedures are
called changes depending on how Pollux implements the automaton step proce-
dure. Furthermore, two output procedures are used where only one system call
needs to be made. This is solved using the following piece of code:

void line1_O_Avant_A(void* cdata, _boolean v)
{if (v) dir_A -= 2;
if (first_A) first_A = 0;
else {motor_a_dir(dir_A);dir_A = 3;first_A = 1;}}

void line1_O_Arriere_A(void* cdata, _boolean v)
{if (v) dir_A -= 1;
if (first_A) first_A = 0;
else {motor_a_dir(dir_A);dir_A = 3;first_A = 1;}}

Using variables first_<motor_letter> and dir_<motor_letter> the state
of the motor and the order in which the procedures are called is taken into
account and as a result the system call for determining the motor direction is
only made once. The speed of a motor is set using a simple integer output.

However, there are a few problems with the script. The first is a superficial
one, the original script was written in French making the first task to translate

1Floating is a motor operation mode where no power is supplied, but the motor axle is free
to turn from other forces. The opposite of this mode is brake, where the motor axle provides
a resistance to forces trying to turn it.

25



it into English. Next, the script uses depreciated BrickOS commands such as
sys_time (a variable that holds the time) instead of get_system_up_time() (a
function that returns the time). However, the most limiting part of the script is
the way it insists light sensors must be used. The method employed has already
been explained above, hence only an example will be presented here to explain
why this is a problem. Consider a light sensor that must differentiate between
three different ranges of values. For this to be possible, after each reading the
output threshold would need to be updated, since a boolean can only distinguish
between two ranges. This means it would take two cycles to determine which
one of the three ranges the value is in.

Lastly, LCD control is quite complicated, allowing each 7-segment section
to be individually controlled. A more relevant function for the LCD to perform
would be to display an integer.

3.1.3 New Perl Script for Lustre Compilation - legolus2

As part of the project an updated script was produced addressing the negative
points of the original script raised above. The Perl code is available in Appendix
A. The language translation and depreciated system commands were trivial to
resolve. The light sensor problem was removed by making the light sensor input
an integer, therefore any comparisons on its value can be made inside the Lustre
design and an output threshold is no longer needed. The LCD outputs have
been simplified to a single output capable of displaying a signed integer. A
sample node interface to be used with the new script is shown below.

node nodename (
touch_1: bool;
touch_2: bool;
touch_3: bool;
light_1: int;
light_2: int;
light_3: int;
rotation_1: int;
rotation_2: int;
rotation_3: int

)
returns (
Forward_A, Back_A :bool ;
Speed_A : int;
Forward_B, Back_B :bool ;
Speed_B : int;
Forward_C, Back_C :bool ;
Speed_C : int;
LCD_INT : int;
);

26



3.2 Investigation into SCADE Compiling Op-
tions

There are two main routes available for compiling a SCADE design to C code
compatible with BrickOS. The first seeks to manipulate the SCADE project
files into a Lustre design and then complete the rest of the compilation process
using the method described above (3.1.2). The other method hopes to make
use of the code generation techniques already present in SCADE. There are
advantages and disadvantages to both of these methods and either can be used
with varying degrees of success. Both compilation methods will be explored in
detail but first it is necessary to provide an overview of the way SCADE stores
designs.

SCADE uses two types of files to keep track of the contents of a project:
.saofd and .saofdm files. Saofdm files are used to store the general project
settings, one for each project, and for each node in the project there is a cor-
responding saofd file containing its details. The layout of saofd files bears a
resemblance to Lustre design files; however, there are some major differences
that prevent it from being compatible with Lustre.

3.2.1 SCADE Design to Lustre v4 Format

A tool is available that claims to be capable of translating a SCADE project
description file (.saofdm) to a Lustre design (method A in figure 3.3). The tool is
called SCADE2lustre and is included as part of the SCADE suite [15]. However,
the Lustre design produced by this tool does not adhere to the academic Lustre
v4 language (as used in section 3.1). This means that it is not a compatible
input to the script that has been discussed above. It is possible that this pseudo-
Lustre design could be transformed into one that is compatible; however, each
SCADE language construct would need to be checked for compatibility making
this a time-consuming approach. As such it is doubtful that this approach would
work correctly for all SCADE constructs.

A second tool is available that is able to perform the SCADE to Lustre
transformation. The tool is a UNIX filter called s2l, which is produced by
Verimag [23]. The tool works with the node description files (.saofd), which
must first be concatenated together in a suitable order (method B in figure
3.3). It then transforms the concatenated saofd files into a Lustre design that
strictly adheres to the v4 language. Thus, it would be possible to use this as an
input to the Perl script. However, it does not support some of the more advanced
SCADE language constructs, in particular conditional activation. Also, it would
be difficult to automatically concatenate the saofd files since the order in which
it must be done changes with each design.

3.2.2 Translating SCADE’s C Code to Executable Code
on the RCX

The other avenue to explore for compiling a SCADE design into a BrickOS C
program involves using the internal code generation in SCADE (method C in
figure 3.3). The first stage of this uses the tool SCADE2lustre which has already
been described above. SCADE2lustre’s output is used as input to the SCADE

27



Figure 3.3: Different methods for translating a SCADE design to BrickOS code

28



suite program Lustre2C. This program serves a similar role as Pollux (section
3.1.1) which creates the automaton environment necessary for the reactive de-
sign to be executed. This process can be performed more easily using SCADE2c
which calls both SCADE2lustre and Lustre2C.

However, the automaton environment produced by Lustre2c is not the same
as the one produced by Pollux. It is a more “open” format, for example it does
not support automated calling of output procedures. This has the disadvantage
of being much worse at information hiding but does allow more flexibility. Nev-
ertheless, the Perl script (with the Lustre compiling components removed) will
not create correct code to interface with the environment produced by Lustre2c.
Therefore, a new script (based on the previous work of Mauras [22]) will need
to be created that can generate code executable on the RCX while supporting
the Lustre2c automaton environment.

3.2.3 Evaluation of SCADE Compilation Methods

Of the three compilation methods analysed, the one using SCADE’s own inter-
nal code generation is the most promising. This is because the internal code
generator will always support any language constructs in SCADE since it is part
of the SCADE suite. Whereas for the other two methods, it is conceivable that
they may not work correctly for all language features; indeed it is already know
that some features are incompatible (e.g. s2l and conditional activation). Also,
if the input/output format should change, then the script can be updated to
reflect this, unlike the other two, which are fixed in their functionality. For ex-
ample, safe state machines require a different way of handling inputs. Initially,
support will not be provided for safe state machines, however, it is an example
of how the script can be updated, thus providing flexibility.

Before the new script can be explained it is necessary to examine the au-
tomaton environment that Lustre2c generates.

3.2.4 Environment Generated by Lustre2C

Although it is possible to generate “flat” programs (as in Pollux which only
produces code for one combined node), lustre2c will be run with no expansion
enabled so there will be a separate context and step procedure generated for
each node. Having said this, the main node’s step and initialisation procedures
call all the sub-node’s step and initialisation procedures respectively; hence we
need only be concerned with the main node.

Lustre2c generates four files of relevance to this implementation: <node_name>.h,
<node_name>.c, <node_name>_global.c and <node_name>_const.c. The header
file (<node_name >.h) contains the contexts for all nodes in the system and pro-
totypes for the initialisation and step procedures. For example,

typedef struct {
_int _I0_init_value;
_int _I1_incr_value;
bool _I2_reset;
_int _O0_count;
_int _L4_countgreen;
bool _M_init_0_countgreen;

29



Figure 3.4: A flow diagram describing SCADE2Lego’s operation

} _C_counter;

void counter_init (_C_counter *);

void counter (_C_counter *);

The associated .C file (<node_name>.c) contains the code of all the func-
tions prototyped in the header file. Lastly, the files <node_name>_const.c and
<node_name>_global.c c contain constant values and global variables, respec-
tively, for the project. In a similar style to Pollux, Lustre2c uses unique types
for variables in its environment such as _int and bool.

3.2.5 SCADE2Lego Script - Usage and Description

The SCADE2lego script (figure 3.4) is called as follows:

Scade2lego <node_name> -i <no of inputs> <list of inputs,
ordered as they appear in SCADE> -o <no of outputs> <list of
outputs, ordered as they appear in SCADE>

The script begins by writing a series of #include statements, for the BrickOS
system calls. It then #defines true and false (since the SCADE2c code uses
these) and then creates types for _int and bool. Next, it checks for the ex-
istence of the project constants file (<node_name>_const.c) and, if it exists,

30



it proceeds to copy the constant declarations (identified using regular expres-
sions) to the output file. If there is no constants file then the script contin-
ues regardless, since this represents the situation where a project has no con-
stants. Exactly the same operation is then performed on the global variables
file (<node_name>_global.c), i.e. global variables are identified by regular ex-
pressions and copied to the output file. The header file is then opened and the
context for each node is copied to the output file.

Next, the variables used for holding the automaton context and the motor
states are generated (first_A, dir_A etc. - section 3.1.2), which is followed by a
printing of all the possible output procedures. This is done so it is not necessary
to selectively produce only output procedures that are used in the project, since
any uncalled output procedures will not interfere with the program. The motor
output procedures are the same as those designed by Mauras in the legolus Perl
script, and their functioning has already been discussed in section 3.1.2.

Creating the input procedures is more complex since it is necessary to know
which variable in the automaton context corresponds to a particular input. This
information is derived from the arguments that are specified when the script is
executed. Therefore, by using the order in which the inputs are listed and
SCADE’s well-defined naming scheme, input procedures can be automatically
produced outside the SCADE compiling program. This is in contrast to the
way that Pollux handles input procedures, as it automatically generates them
while generating the automaton context. Thus, the user does not need to know
the structure of the internal automaton context.

After this, the final piece of the automaton environment, the initialisation
and step procedures from <node_name>.c, are then copied to the output file.

Lastly, the main procedure is built. First, if any of the sensors are active,
then a BrickOS system call must be made to initialise them as such. Fur-
thermore, if any of the sensors are rotation sensors, they must be initialised,
turned on and a small delay provided to allow them to settle (three further
system calls). The driving loop is then created starting with calls to the input
procedures generated earlier in the script. A call is then made to the main
node’s step function before generating the output calls. The order specified by
the command arguments (after the -o) is used to pass the relevant part of the
automaton context to the output procedure. Lastly, a delay is inserted which
defines the base clock for the reactive kernel.

The code for SCADE2lego is available in Appendix B.

3.2.6 Testing of SCADE2lego

Since the script performs many independent operations, i.e. the operations
do not rely on the correct functioning of others, each section can be tested
independently. The exceptions to this are requests for opening files because,
if these fail, then so will other parts of the script. Therefore, the first stage
was to test that all system file calls can correctly handle failures. This was
accomplished by artificially causing the calls to fail one by one and noting the
resulting behaviour.

The script uses four operations responsible for copying data between the
input files and output file. Testing these involved checking that the regular
expressions used to identify the parts to be copied were correct. Although it

31



was difficult to determine this for all cases, a variety of input files were used and
in each case the regular expressions identified the correct part of the file.

What remained to be tested was that the input procedures and main driving
loop were generated correctly. The rest of the script just writes predefined text
to the output file and was therefore trivial to test.

Testing the generation of the input procedures was accomplished by enumer-
ating seven different possibilities. These were, changing the number of inputs
used between zero and three and checking that boolean input procedures were
generated for touch sensors and integer input procedures were generated for
light and rotation sensors. In each case the part of the automaton context that
the procedure should update was matched up against the actual variable in the
context, therefore showing them correct.

In the main driving loop, there are two parts to test. First, that the script
generates correct system initialisation calls for the sensors and also that it calls
the input and output procedures correctly. The initialisation calls were tested
by checking the results produced for touch, light and rotation sensors. The
correct calling of input and output procedures was tested by running the script
with different combinations of inputs and outputs and then checking that the
corresponding calls generated were correct.

3.2.7 Evaluation

The main aim of this project is to provide a way to use Lego Mindstorms as
a teaching aid for synchronous reactive systems. The script, combined with
SCADE2c, helps realise this by providing a simple process for creating code
executable under BrickOS from a SCADE design. In its current state, the
script supports all SCADE language constructs apart from safe state machines.
Procedures are built-in to handle touch, light and rotation sensors, as well as
motor outputs, control of the LCD and use of the RCX’s internal speaker. If a
designer using the script should require more input/output functionality then
the relevant procedures can easily be written and added to the script.

Future work on the script should first involve providing support for safe state
machines. The script interface could then be improved by reading the inputs
and outputs directly from the SCADE2c generated header file. Currently they
must be specified on the command line, which can be inconvenient if a project
contains many inputs and outputs.

3.3 Communicating RCXs

A single RCX is quite limited in terms of its ability to interact with its envi-
ronment. Three sensors and three actuators are enough for only simple designs.
Therefore, it would be very useful if the RCX was capable of controlling more
outputs and reading more inputs. Mindsensors [27] manufactures input multi-
plexors which increase the environment interaction an RCX can handle. How-
ever, none of these devices were available for this project so another method of
expanding the RCX’s I/O capabilities was implemented.

As described in section 2.6, BrickOS provides the ability for a RCX to send
an arbitrary message to one or more other RCXs. Consequently, one RCX can

32



take control of another’s I/O capabilities, thus providing it with at least six sen-
sors and at least six actuators depending on the number of RCXs communicat-
ing. This protocol is developed without regard for the synchronous hypothesis
and should not be considered a well-defined extension to the system, simply a
method of extending the RCX’s I/O capability. Now that the motivation has
been introduced, an in depth description of the BrickOS features required will
be given.

3.3.1 Description of BrickOS Features Required for Com-
munication

Since only two RCXs will be communicating, BrickOS’s integrity network layer
will suffice. This is because messages will only be directed to one RCX; there-
fore, it is not necessary to identify individual RCXs. To send a message using the
integrity layer, the function lnp_integrity_write is used. It takes two param-
eters, the address of the start of the packet and the length of the packet in bytes.
Messages are received by setting up a message handling function. This function
will be called every time an incoming packet is received and therefore it should
be kept small since it will interrupt execution of other threads on a regular basis.
Note that this interruption will not affect the synchronous hypothesis since the
period at which the reactive kernel is called is kept constant by dynamically ad-
justing the pause time in the driving loop. The operating system is informed of
the function used to handle messages by calling lnp_integrity_set_handler
and passing the name of the message handling function.

The network protocol to be implemented is a master/slave communication
with timeouts. Therefore, the RCX running the reactive kernel will be the mas-
ter and the other the slave. The slave will simply process output instructions
it receives and send sensor readings back to the master. Because communica-
tion between the two bricks will be happening asynchronously from the reactive
kernel, a separate thread will be used on the master to adjudicate the commu-
nication. Threading in BrickOS is very easy to set up. Firstly, a variable must
be defined of type tid_t to hold the process ID of the thread. Next, a call is
made to the function execi() which starts executing a thread and returns a
corresponding process ID. execi() takes as parameters, the function that will
be run in the thread and its arguments, the priority of the thread and the stack
size available to it.

3.3.2 Implementation

The main procedure (which encompasses the driving loop) requires very few
changes to enable communication to take place. Firstly, it must call the pro-
cedure to set the incoming message handler and then start execution of the
master communication thread. When an incoming message is received, the
message handler is activated and copies the incoming data to a permanent lo-
cation. It then sets a global variable recording the fact that a message has just
been received.

The master communication thread consists of a non-terminating loop. The
loop begins by recording the current system time before sending the outgoing
actuator control packet. It then uses the wait_event feature of BrickOS to poll
for a return message or a timeout. This is calculated using the global incoming

33



message variable and the time that was recorded before the message was sent.
After it wakes up, it performs a check on the incoming message variable to
determine whether a message has been received or if a timeout has occurred.
If a timeout has occurred then this is recorded; otherwise, it resets the timeout
variable representing the fact that normal communication has resumed. A short
delay is then taken to help prevent message collisions before repeating the loop.

This method only provides a framework for communications - the main driv-
ing loop is responsible for building the packet that is sent to the slave. Similarly,
it must also interpret the packet received from the slave.

An overview of the program running on the slave will now be given. The
message handler is almost identical to the one running on the master brick; it
stores the incoming data and records the fact that a message has just arrived.
The main procedure, after setting up the message handler, consists of a non-
terminating loop. It constantly polls the incoming message variable, and when a
message arrives it continues executing. First, it sets up its outputs according to
the packet received. Next, it builds an outgoing packet consisting of its sensor
readings before sending this back to the master brick. It then waits for the next
message to arrive.

A framework for the communication protocol is given in appendix C.

3.3.3 Evaluation

Using the implementation in practice proved to be quite reliable; however, the-
oretically it breaks the most important rule of designing synchronous reactive
systems - the synchronous hypothesis. This is because inputs coming from the
slave brick are not perceived synchronously with the local inputs on the master
brick. The reverse of this is also true; actuator control signals are received on
the slave brick a long time after they were issued by the reactive kernel. The
order of this delay is about 10 times larger than the base clock of the reactive
system (100ms). Fortunately, in the domain that is being dealt with in this
project this is not a problem since a 100 milliseconds delay does not have a
large effect on all but the fastest reacting models. Therefore, as stated in the
introduction, this addition should not be viewed as a well-defined feature of the
system but simply as a way of extending the RCX’s interactive capabilities.

Having said this, it is possible for the synchronous design to be somewhat
protected against the problem of communication loss. By simply adding a
boolean input to the system that reflects the status of communication between
the bricks, the system can enter a safe state when communication fails. This
would also involve the slave brick’s code being extended to set its actuators into
a safe state when communication fails. Since the slave brick can also detect a
timeout, this is a reasonable requirement.

The 100 millisecond delay mentioned earlier is based on the amount of data
that needs be transmitted back and forward to read three sensors and control
three actuators. This would be reduced if less sensors or actuators were being
used. Also, the timing values being used at the moment are quite lax to ensure
that message collisions do not occur frequently. Therefore, more aggressive tim-
ings may be possible but determining their correctness would require extensive
experimentation.

34



Chapter 4

A Brick Sorting Robot

After developing the SCADE compilation script, it could then be put to use on
the first robot; a brick sorter. The idea behind this robot is as follows; first new
bricks are introduced to the system from an external supply. Next, a brick’s
colour is checked using a light-sensitive device and transported to a basket
which reflects its colour. The basic system requirements are quite simplistic, so
two additional requirements were specified to introduce some more complexity.
One further requirement is that some system monitoring must be performed so
mechanical jams etc. can be detected. Furthermore, if a jam is detected then
the operator of the system should be alerted in some way before being able to
resume the system.

4.1 Problem Analysis

The problem readily divides itself into two subsystems: a sorting subsystem and
a monitoring subsystem. The sorting subsystem is the more complex of the two
and will be investigated first.

There are numerous different ways to transport bricks around the system by,
for example, using a robotic arm. However, for this application it makes sense
to use a conveyor belt, since this will provide the required functionality with
minimal resources. Bricks will be introduced to the system at one end of the
conveyor belt and sorted at the other. In the middle, a light-sensitive device will
be placed above the conveyor belt so that the colour of a brick can be measured
as it passes along the belt.

There are also many methods available for implementing a sorting mech-
anism for the bricks. The method chosen is to have an actuator that pushes
certain colour bricks off the belt before they reach the end. This method is the
simplest since it makes use of the end of the conveyor belt as a natural sorting
bin.

Monitoring in the system will take the form of checking the speed of the
conveyor belt since this is likely to be where a jam will occur. This can easily
be done using a rotation sensor. From the hardware point of view, it will be
necessary that when the conveyor belt stops moving, the motor driving it will
be physically disconnected in some way, thus preventing it from burning out.
Eventually the jam will be detected and the motor switched off, but it is before

35



Figure 4.1: Original Lego Brick sorter - [26]

this event occurs that the hardware based protection must take effect.

4.2 Design

4.2.1 Lego Design

The basic design of the system has come from Lego model number 9701-6 [28].
A photo of the model is given in figure 4.1. This design provides a brick loading
mechanism for introducing bricks to the system and a conveyor belt which moves
bricks from the loader under a light sensor. However, the system has no sorting
mechanism so this will be designed and implemented as an add-on at the end
of the conveyor belt. The final model is shown in figure 4.2 and the sorter
subsystem in figure 4.3. Each time a brick is to be pushed off the conveyor
belt, the main driving cog completes a full rotation, thereby extending its arm
over the conveyer belt and retracting it again so bricks can pass by it. The
sorter arm detects when it has returned to the start position by using a rotation
sensor. Due to the chosen gearing, and the granularity of the rotation sensor (16
divisions per rotation), the rotation sensor records 27 intervals per full rotation.

The same method can be used to calculate the update interval of the rotation
sensor measuring the speed of the conveyor belt. Using the gearing ratios, it
can be seen that under normal conditions the rotation sensor will update its
reading every 300 milliseconds. The period at which the sensor is polled will
be a bit more than this to ensure that false belt jams are not generated. This
means that a motor could spend more than 300 milliseconds trying to turn a
jammed axle, which may be enough to damage the motor. Hence, there must
be special hardware present to deal with a jam. This is accomplished using a
special clutch gear, which allows the cog driving it to turn independently of the

36



Figure 4.2: The Brick sorter with a sorting subsystem

Figure 4.3: Sorter Subsystem

37



axle once a certain torque is applied. Thus the rotation sensor will detect that
the axle has ceased turning and can switch off the conveyer belt motor. In the
interim stage when the motor is turning and a jam is present, no harm will come
to the motor since it will not be turning the axle that drives the belt, only the
disengaged cog.

The system requires the following resources: three actuators and four sen-
sors. However, due to the extra I/O capabilities provided on the RCX itself, it
is not necessary to make use of a second RCX and the communication protocol
developed in section 3.3. Two of the actuators are motors; one powers the con-
veyor belt and the second is used to control the sorter. The third actuator is
the internal speaker in the RCX which is used as an alarm to signal when a belt
jam occurs. Three external sensors are required, one light and two rotation.
The light sensor is used to detect the colour of a brick. As mentioned earlier,
one rotation sensor is used to read the speed of the conveyor belt and a second
is used so the sorter arm can return exactly to its home position. The fourth
sensor is one of the control buttons on the RCX used for resuming the system.

The proposed operation of the system is as follows: first a brick is moved
out of the loader subsystem and placed on the conveyor belt. The conveyor belt
then moves a brick underneath the light sensor which takes its reading. Next,
depending on the colour of the brick, when it reaches the sorter arm it will
either be pushed off the belt or allowed to move to the end. If at any time the
belt’s speed drops below a certain threshold then the system is put into a safety
state where all actuators are switched off and an alarm sounds. This continues
until the system operator removes the element that caused the jam and presses
a touch sensor to resume. By the time the first brick is sorted, a second brick
has already been loaded onto the conveyor belt and the process repeats.

4.2.2 SCADE Design

The design of the system is based on a top-down hierarchical order. As such the
system will be described in terms of this hierarchical ordering. The discussion
will begin at the highest level node.

Bricksort node

The highest level node, named bricksort is shown in figure 4.4. This node is
responsible for taking all inputs and outputs of the system and passing them
to the relevant sub-nodes for computation. A brief overview of the nodes will
be given before a detailed discussion. The function of the belt_safety node is
to monitor the conveyer belt for jams. Input_filter and output_filter set
the system into a safe state when jams are detected. Finally, the node sort is
responsible for detecting a brick’s colour and activating the sorter arm to sort
it accordingly. A full description of the SCADE design in given in appendix 4.

Sort node

The sort node is shown in figure 4.5. It begins with a simple comparison between
the light sensor reading and a threshold. This threshold represents the reading
at which the system will consider there to be a brick under the light sensor.
Hence, this comparison operator will provide a true output for the duration of

38



Figure 4.4: Bricksort Node

time a brick is under the light sensor. The output from the comparison is passed
to a rising_edge node, which produces an output of true when its input has
just performed a rising edge. Therefore, this will provide a true output for the
first cycle where there is a brick under the light sensor.

The rising_edge output is used as the reset input for the node compute_max.
After being reset, this node will output the largest value its input has taken so
far. The input in this case is the light sensor and when the brick moves away
from the light sensor, compute_max will have the highest reading the brick gave
on its output. It is necessary to check a brick’s reading using this method
since, if only the first reading was taken, then it could recognise a higher valued
brick as a lower valued brick. This can occur where the first reading is taken
when the brick is not completely under the light sensor. It is only necessary for
compute_max to be in operation when there is a brick under the light sensor.
This is an ideal use for a separate clock and as such, compute_max is condition-
ally activated only when there is a brick under the light sensor. This is the first
of two internal clocks that will be seen in this node; the second is responsible for
activating push_brick. Therefore, the two clocks in the system are the output
of the first comparison operator and the output of on_until.

The output of compute_max is now compared to a second threshold, which
defines the value a brick must be over to be in the light coloured category. If
it is false then this part of the system has completed its task and the brick will
be allowed to run off the end of the conveyor belt. However, if it is true then a
light coloured brick is present which must be pushed off the conveyor belt earlier.

39



Figure 4.5: Sort Node

40



Figure 4.6: push brick node

When the brick is no longer under the light sensor, the initial comparison will
become false and cause the falling_edge node to output true. The output of
the falling_edge node and the brick colour comparison are passed as inputs
to an AND gate. Therefore, when the output of the gate is true, the brick has
just moved away from the light sensor and it is a light colour, so it must be
pushed off the conveyor belt.

The last part of the sort node is concerned with activating the sorter arm
when the brick is in the correct position. The output from the AND gate
mentioned earlier is passed into the first input of the node on_until which,
once its first input turns true, will produce a true output until its second input
turns true. The output of on_until (the second clock in this node) is used as
the condition for activating the node push_brick. The push_brick node will
be described later. For now, it is only necessary to note that it defines when
it should switch itself off since its output is passed into the second input of
on_until. The push_brick node also uses the output of the AND gate as a
reset input to indicate when a new sorting process must commence. In addition
it requires the two rotation sensors as inputs which it will need to activate the
sorter arm at the correct time.

Push brick node

The push_brick node (figure 4.6) is activated just after a brick has left the
light sensor and is required to be pushed off the conveyor belt. The first node,
true_after_number provides a true output after its input has increased by a
certain number. In this case it is the number the rotation sensor reading must
increase before the brick will be placed in front of the sorter arm. When the
number has been reached, an output of true is produced which is used as a
starting signal for the node true_for_number. This node effectively switches
on the sorter arm for the amount of time it takes for it to complete a full rotation
(returning to its home position). The amount of time it is switched on for is
defined by the second rotation sensor’s reading. When the number of rotations
has been reached, true_for_number will output false resulting in the sorter
motor being switched off. This will also trigger a falling_edge node, which is
used to detect when the sorting process is finished. It communicates this out
of the node by setting the done output of push_brick to true. As mentioned
earlier, the push_brick node deactivates itself and it does this by using the

41



Figure 4.7: belt safety node

done output. When done becomes true, the second input of on_until will also
be true and therefore on_until will produce a false output. Since the output
of on_until controls push_brick’s activation, push_brick will be deactivated.

Belt safety node

We will now return to the top level of the design and analyse the belt_safety
node (figure 4.7) which is responsible for ensuring that the system enters a
safe state if a jam should occur on the conveyor belt. The sample rate of the
system is much faster than the rate at which the rotation sensor monitoring
the conveyer belt’s reading increases. In other words, on each cycle of the base
clock, the rotation sensor reading will not have increased even though the belt is
still moving. Therefore, the rotation sensor measuring the belt must be sampled
at a slower rate. This is another ideal use of clocks in a dataflow design and as
such will be modelled in this way (making it the third clock in the design). A
constant, belt_sample_rate is provided as input to a node called true_every.
This node will provide a true output with period defined by its input, i.e. its
output will be true every 20 cycles, if its input is 20. true_every’s output is
used as the activation condition for the node belt_ok.

The belt_ok node checks that the rotation sensor responsible for monitoring
the conveyor belt increases on each cycle that true_every’s output is true. If it
does then belt_ok’s one output, OK, will remain true. However, if the rotation
sensor value has not increased since the last time belt_ok was activated then
its output will become false. The only way to reset this is for belt_ok’s other
input, prgrm_button to become true. This signals that an operator has removed
the problem and is now resuming the system. The system must be setup as it
was when the jam occurred since the system is only paused when a jam occurs,
not reset.

Now that the behaviour of belt_safety has been analysed, its effect on the
system as a whole will be examined. As can be seen in figure 4.4, the output
of belt_safety is used to control the conveyor belt motor, an alarm and is
also used as input to the nodes input_filter and output_filter. When
belt_safety’s output becomes false the system will move into a safe mode,
turning off its actuators. One is obviously switched off since it depends directly

42



Figure 4.8: A) input filter node, B) output filter node

on the output of belt_safety. The other is controlled by output_filter
(figure 4.8B). This will deactivate the motor if the output of belt_safety is
false, or if it is true, it will let the signal pass through unaffected. While in this
safe state the inputs must be protected from changing, since this could cause the
system to malfunction as the motor outputs are being artificially stopped. For
this reason the node input_filter (similar to output_filter) is used to hold
the inputs at their previous values should the output of belt_safety become
false. The input_filter node is detailed in figure 4.8A1. It is simply a switch
on the output of belt_safety: if it is true then the inputs are passed through
undisturbed but if it is false then the inputs are held at the value they had when
the system was still functioning correctly (using the PRE operator described in
section 2.3).

4.3 Implementation

The SCADE design was translated into code executable on the RCX using the
methodology designed in section 3.2. First, SCADE2c was run on the project
files and the output of this was used as the input to the SCADE2lego script.
SCADE2lego was called as follows:

Scade2lego bricksort -i 3 rotation_1 rotation_2 light_3
-o 8 Forward_A Back_A Speed_A Forward_B Back_B Speed_B
LCD_INT Alarm

The control buttons on the RCX are unavailable in the script since they
would not normally be used; however, in this case the program button is needed
as an additional input. The input procedure is shown below. Observe that the
variable in the context that it updates is liable to change if SCADE2c was rerun.

1Upsidedown SCADE operators, like the PRE operators in figure 4.8A, simply reflect the
fact that their inputs are on the righthand side of the symbol (and their outputs on the left).

43



void I_btn_prgm(_C_bricksort* ctx, bool V)
{

ctx->_I3_prgm_btn = V;
}

It is called in the main driving loop as follows:

if (PRESSED(dbutton(), BUTTON_PROGRAM))
{I_btn_prgm(&the_ctx, true);}

else
{I_btn_prgm(&the_ctx, false);}

4.4 Testing

4.4.1 Testing Methodology

The testing methodology used in this section will be applied to both this robot
and the one built in chapter five. In order to develop the methodology, first
the chain of events leading from design to implementation must be studied.
At the highest level is the SCADE design, which may or may not be correct.
The design can then be simulated and verified inside SCADE, but since the
verification plug-in was unavailable, only simulations could be performed. The
first link in the chain is SCADE’s internal code generation. This is certified to
be DO178b compliant and, therefore, its correctness has already been proven.
Next, the SCADE2Lego script produced in section 3.2 is run on the output of
the code generation. The script has already been tested in section 3.2.6 and for
this reason we will assume that it is correct. The last part of the compilation
chain is to compile the output of the script into machine code that is executable
on the RCX. This uses the long established GCC tools whose correctness have
been proven over time. What remains at the end of this compilation process
is a complete robot system with both hardware and software components in
place. Therefore, the robot can be tested as a black box. In many industries
including aviation, automotive and telecommunications, this is normally how
solutions are tested and for this reason we will apply the same style of testing
to this project.

Since we are assuming that the compilation process is correct, when the
design produced in SCADE is simulated it should directly reflect the behaviour
of the final robot. Using the simulation for testing is very useful for finding
functional bugs in the program. However, the robotic system must be tested as
a whole to discover if the design’s inputs and outputs are correctly mapped onto
the sensors and actuators in the real world. An example of this would be during
simulation the rotation sensor reading was always considered to be increasing.
It was only when applied to the real world that it became apparent that the
reading can decrease as well as increase since the motor it is monitoring can
turn in both directions.

In conclusion, testing in this project will take the form of building test cases
that the robot must pass. It should be noted that the simulation tool is a very
powerful testing method. However, due to the argument for black box testing,
only test cases on the completed robot will be considered.

44



4.4.2 Test Cases

The test cases the robot must pass are as follows:

• A brick is successfully loaded onto the conveyor belt and sorted to the
correct bin based on its colour.

– PASSED - this was trivial to test; the system is simply observed
noting that no bricks were incorrectly sorted.

• It is not possible for two bricks to pass through the system in such quick
succession that the control algorithm fails.

– PASSED - the speed at which the loader introduces new bricks to
the system is slow enough to ensure this problem will not occur.

• If the conveyor belt becomes jammed at any point during the system’s
execution, then the system should move into a safe state.

– PASSED - the system was jammed at a variety of points each reflect-
ing the different positions a brick or bricks could be in.

• From any point at which the system is set into a safe state, the resume
button can be used to successfully resume operation.

– PASSED - for each of the positions the system was jammed in as
described above, the resume function was tested to ensure that the
system continues functioning as normal.

4.5 Evaluation

The secondary aim of this project was to design, build and investigate robots
built according to the synchronous approach. Furthermore, these designs should
try to highlight key areas of dataflow synchronous reactive systems and evaluate
them. In this section SCADE constructs such as the conditional activation
operator, the “followed by” operator and the PRE operator have all been used,
so the reader can see their role in a real-world context. Furthermore, the design
has made use of hierarchical decomposition and because of this it has made
explanation of the design considerably easier.

However, some aspects of the dataflow approach have been highlighted that
are not so successful. The node push_brick is responsible for the timing and
pushing of a brick off the conveyor belt. To model this, an idea of state is
needed to keep track of the brick’s location on the belt at various times. In
the design, this transitioning through states is modelled as transitions through
nodes, whereby each node has an input that informs it of when it should begin
computing. This input is passed to it as an output of the last node and a chain
is built between nodes acting like transitions in a state machine. This is an ugly
use of the dataflow formalism and as such it would be much better expressed
in a state based formalism such as safe state machines. Although it would be
possible to do this within SCADE, the chapter will focus only on the dataflow
formalism. An example involving state based control will be shown in the next
robot.

45



However, there is an upside to this transitioning through nodes as if they
were states. While the progress of a brick is being tracked so it can be pushed off
the conveyor belt, another brick may enter the system and have its maximum
value computed as it passes under the light sensor. So long as the old brick
has been pushed off the conveyor belt before the new brick has passed the light
sensor, the behaviour of two bricks in the system will be modelled correctly. This
is a reasonable requirement since the speed at which the loader introduces new
bricks to the system can be controlled by changing its gearing, therefore ensuring
that two bricks cannot be in the same part of the system at the same time. This
parallelism is undeniably useful as it significantly increases the throughput of
the system.

46



Chapter 5

A Line Following Robot
with Obstacle Avoidance

To provide a good overview of the different types of robots that can be built with
Lego Mindstorms and programmed using synchronous languages, this section
will focus on a robot that interacts with an external environment. This is
opposed to the environment of a reactive system changing internally; an example
of this would be the brick sorter (section 4). This project has already explored
a reactive system of the former type, the line following robot of section 2.7.
Since that robot was very simplistic, in this section a more complex robot of
this variety will be built.

It is proposed that this robot will build upon the ideas developed in section
2.7. Therefore the requirements for this robot are as follows. Firstly, it must be
capable of following a line. Secondly, it should be able to detect an obstruction
on the line and manoeuver around it.

This robot will also demonstrate some features of SCADE that have not
been described yet. In addition, the communicating RCX protocol developed
in section 3.3 for expanding the RCX’s input/output capabilities will be used.

Due to the size of the problem and the isolation between the software and
hardware analysis, design and implementation, first the hardware side and then
the software side for this robot will be presented.

5.1 Hardware

5.1.1 Problem Analysis

The hardware design for this robot is made particularly challenging by the need
for the robot to perform precise maneuvers. This is necessary since the robot
cannot calculate its position, it can only deduce where it is by the moves it
has made so far. If these moves are inaccurate then an obstacle will not be
avoided correctly. This complexity will be dealt with in the robot’s wheelbase
and, to design this, the different kinds of moves it is required to make must
be considered. Firstly, the robot must be able to move forward and back in a
perfectly straight line. In addition, it must be capable of turning on the spot
by exactly 90 degrees. Furthermore, if the same turning method is to be used

47



Figure 5.1: Different types of synchro drives

for following the line, then it must be able to turn by an arbitrary amount (e.g.
keep turning until a light sensor detects it has rejoined a line).

The other major hardware feature the robot must provide is a sensor array
that is always in front of the direction of travel. The sensor array must provide
facilities for following a line and detecting an obstacle. Line following has already
been discussed in section 2.7 and as such it will suffice to say that the two light
sensor solution will be implemented.

5.1.2 Lego Design

A variety of wheelbases will now be assessed in an attempt to find the one most
suitable for this application.

Firstly, the differential drive method (implemented in section 2.7) was con-
sidered. In this design the powered wheels’ directions are fixed so the robot
performs turns by supplying different amounts of power to different wheel sets.
A caster wheel is usually used on the back of the robot for stability and to
provide a tight turning circle. The advantage of this method is its extreme
simplicity; however, it is very difficult to perform precise turns and the caster
wheel can cause problems if the robot is required to move backwards.

Next, a skid drive was assessed. This design is very similar to the differential
drive except there is not a non-powered wheel on the device. This is the drive
method of tracked vehicles etc. To perform a 90 degree turn using this method,
one side of the vehicle is powered forward and the other in reverse. The advan-
tages and disadvantages are very similar to the differential drive method being
a general lack of precision. The exception is that backwards movement is not a
problem.

A car drive was also considered. This method is identical to a standard
automobile, the rear two wheels are fixed and the front two handle the steering.
However, once again, the ability for this type of drive mechanism to make precise
turns is quite limited. The angle of the steering wheels must be closely monitored
since a small error in their orientation can result in big errors in its movement.
Furthermore, if the two rear wheels are powered together, then it is almost
impossible for this robot to perform precise 90 degree turns.

48



Finally, a synchro drive was considered. This design is radically different to
the others mentioned so far, because the orientation of the all the wheels on
the robot changes to perform different maneuvers. Normally, a synchro drive
moves in different directions by aligning all its wheels in the relevant direction
and powering the driving motors (as shown in figure 5.1A). However, a sensor
array is needed in front of the robot no matter what its direction of travel.
For this reason a traditional synchro drive would not work unless the sensor
array could be rotated round the robot. Since this is unnecessarily complex for
the application, a different type of synchro drive will be investigated. In this
method, when the robot performs a turn, it rotates all its wheels by 45 degrees
corresponding to figure 5.1B. It then supplies power to two of the wheels and
reverse power to the other two causing the robot to rotate on the spot. When it
finishes rotating, the wheels turn out so that they are all identically aligned and
the robot can move forward again. This method allows the robot to perform a
turn on the spot with good precision (and no turning radius). The disadvantage
is the speed at which it performs a simple turn, since it must turn its wheels in,
rotate and then turn them back out again.

An evaluation of the possible wheelbases leaves the synchro drive as the clear
choice. This is purely due to its ability to perform turns of precise angles. If
a simpler, faster solution was desired, then the skid steer drive would fit the
requirements well.

The synchro drive method requires the following resources to work. Three
motors are needed, one to alter the orientation of the wheels and two to power
the wheels. To ensure that the wheel orientation remains correct, a rotation
sensor is also needed for monitoring the first motor. To turn through exact
angles, a second rotation sensor is required to monitor either of the motors
powering the wheels themselves.

The robot sensor array needs to provide the following functionality. Firstly,
it must be capable of following a line which can turn in either direction. This will
be implemented by employing the same solution as used in section 2.7, therefore
requiring two light sensors. Obstacle avoidance will be provided using a bumper
that triggers a touch sensor. In addition to the bumper, an experimental method
for obstacle detection will be implemented that allows the robot to detect an
obstacle before it bumps into it. This will be accomplished by using a light sensor
as a range finder. When a light sensor comes closer to an object, no matter what
its colour, its reading increases. Therefore, this provides an additional way to
detect obstacles. Emitting extra infrared light increases the effectiveness of the
light sensor as a range detector. This can be accomplished using the infrared
transmitter on the RCX used for communication and downloading programs.
However, the transmitter is not available in this application because, due to the
number of sensors required, the infrared devices are needed for communicating
between the RCXs.

5.1.3 Implementation

Implementing the synchro drive in Lego proved to be quite difficult. The first
level of difficulty came from implementing the mechanics required to turn all
four wheels simultaneously. This required careful consideration for routing the
axles around the robot. Furthermore, a large amount of torque was needed to
turn all the wheels. This was produced using a large number of gear stages.

49



Figure 5.2: The robot capable of following lines and avoiding obstacles

However, it resulted in a robot that was exceptionally slow at turning. To
provide a remedy, more torque was created at the motor stage by mechanically
connecting two motors together and using them to drive the initial stage instead
of one motor. Now that more torque was being provided, some of the gear stages
could be removed resulting in faster turns.

The next problem to arise was how to power the driving wheels when a
layer of mechanics must exist on top for the purpose of turning them. This
was resolved by directly mounting the motors on the wheel supports below the
turning mechanics. The motors drive 8t gears, which turn 40t gears that are
directly connected to the wheel axles. This creates a gear ratio of 1:5 and is
enough to make a standard Lego motor capable of driving the wheel.

5.2 Software

5.2.1 Problem Analysis

The two software requirements for this robot are quite distinct and as such will
be modelled in this way. The only transitions between the two operating modes
occur when a robot bumps into an obstacle and when it rediscovers the line after
manoeuvring away from it. Although the requirements do not state it, it is clear
that this problem will require, in part, a state based solution. This raises the
question of which state based formalism within SCADE should be utilised. As
mentioned in section 2.4, SCADE supports both simple state machines and safe
state machines. Safe state machines are an order of magnitude more complex
than the simple machines and for this reason are out of the scope of this project.

50



Simple state machines on the other hand provide a basic way for introducing
some state control into a dataflow design. Simple state machines in SCADE
have not been discussed before and since they will be used in the following
design, a short explanation of their functionality will now be given.

State machines are constructed from three different components: an initial
state, one or more internal states, and transitions. There must be exactly one
initial state per machine. This is where execution begins, and leading from it
(and other states) transitions are constructed so control can pass between the
states. Transitions are given boolean expressions which represent the event that
must occur for control to be passed from the state on one end of the arrow to
the state on the other end of the arrow. Boolean expressions can either be
true, indicating that a transition should be taken immediately, or some function
of the state machines’ inputs. State machines have as many outputs as states
(excluding the initial state) and each maps to an internal state of the machine.
Therefore, state machines communicate their internal state back to the dataflow
design by setting the output corresponding to the current state to true and all
others to false. Each state machine has an initialisation input and when this is
set to true, the machine will reset on every clock cycle. When it becomes false,
the machine begins executing.

The obstacle avoidance to be performed by the robot will be relatively simple.
Therefore, for it to work correctly, the obstacle and its placement must meet
certain requirements. Some examples of allowed obstacles are shown in figure
5.3. The part of the obstacle that obstructs the line (i.e. the part the robot
will bump into) must be the furthest part of the obstacle to extend in that
direction. In the direction at a right angle to the line, the obstacle may extend
an arbitrary amount. Furthermore, the edges of the obstacle must be straight,
containing no indents that the robot could get stuck in. The reason for placing
such stringent restrictions on an obstacle’s shape is because it is not intended
for the path finding around an obstacle to obscure the rest of the system. Now
the restrictions on an obstacle have been described, the navigation algorithm
for avoidance (figure 5.3) will be presented.

The robot begins by backing up when it encounters an obstacle. This is so
that when it rotates, it does not hit anything that might effect the exact rotation
required. Next, it rotates to the left and moves forward for a set distance. It
then turns to the right and moves forward. If the obstacle is large, then the robot
might encounter it again at this stage (figure 5.3B) in which case it repeats this
process again (backup, turn left, move forward, turn right, move forward). If it
does not bump into the obstacle while driving forward, then after a set distance
it will stop and turn right. Finally, it drives forward expecting to rediscover the
line. If the obstacle is long then it is possible it will bump into it again (figure
5.3C). If this occurs then it backs up, turns left and repeats the last three steps
mentioned above (forward, turn right, forward). This can repeat an arbitrary
number of times. When it finally makes contact with the line, it turns left and
continues to follow it.

5.2.2 SCADE Design

The design methodology is similar to that of the brick sorting robot, it is struc-
tured using hierarchical decomposition with higher-level nodes considered more
abstract than their internal ones. However, there are some exceptions in this

51



Figure 5.3: The obstacle avoidance algorithm

design since the main control for the robot must be placed at a low level in
the design. This is because the control is modelled as a state machine, and
these require a large amount of feedback from their outputs to determine input
values. For example, if the state machine has just transitioned to a state where
the robot must move forward for a certain distance, then it will be informed of
when the distance has been travelled by using a rotation sensor. The number
of rotations must be counted from when the state machine first enters the move
forward state. This condition could be detected by a rising_edge node and
then passed to a counter which would output true when the required revolutions
were reached. Despite being a trivial example, it applies to some methods used
in the design and shows how output feedback must be used for simple state
machines. The full SCADE design for this robot is provided in appendix 5.

Synchro node

The synchro node (figure 5.4) is the highest level node in the system and it is
named after the wheelbase chosen for this robot. It is responsible for processing
the inputs and then passing them to the node compute_state. Compute_state
contains the state machines and uses these to compute the system’s global vari-
ables. These global variables are then used to derive the output values for the
system. This method produces cleaner and easier to understand designs as op-
posed to passing the values as outputs of compute_state. Furthermore, it lets a
designer produce a solution without worrying about the mapping of outputs to
actuators in the real world. Different variables are set for the different actions
that the robot should perform. In the synchro node, these are mapped to the
system outputs in a way that makes the robot perform the relevant action.

Both inputs and outputs are controlled by filters, in a way similar to the

52



belt monitoring system designed in section 4.2.2. The monitoring in this case
is of the communication between the two bricks. If a timeout is detected, then
the comms_ok input will become false with the result that input_filter will
hold all inputs at their previous values and output_filter will switch off all
actuators.

The last part of the synchro node to discuss at this level is the input process-
ing. The two rotation sensors are passed through unaffected since their readings
will be required at a low level of the system. The touch sensor and light_6 are
used for obstacle avoidance. The light sensor’s reading must be interpreted first
and the node obstacle_present does this. Both these signals (the output of
obstacle_present and the touch sensor) are then combined and passed to the
compute_state node. The last two inputs, light_4 and light_5 are used for
line following. As such they have their values pre-processed to pass a reading
of true if they are over the line or false if not to compute_state.

Now, the obstacle_present node (figure 5.5) will be discussed before pro-
ceeding to the core of the system, compute_state.

Obstacle present node

This node performs a simple function, first it calculates the ambient light value
when the system is started and then it uses this ambient value and the current
light sensor reading to detect obstacles. The ambient value is stored using the
“followed by” operator, which on the first cycle of the system, lets the value of
light_6 through and stores this in the local variable ambient. On every cycle
of the system after that, ambient is simply assigned to itself and therefore its
value never changes.

A possible obstacle can be detected when the value of light_6 becomes large
in comparison to ambient. After experimentation, it was found the correct value
of this is approximately 10. Therefore, when light_6 is greater than the local
variable ambient + 10 the node has detected an obstacle and will set its output
to true indicating this.

The state machines: state control and turn robot

To continue the analysis of the system by means of hierarchical decomposition,
the node compute_state should be discussed next. However, before this the
two state machines that are part of compute_state will be discussed since they
are conceptually on a more abstract level.

The machine state_control (figure 5.61) begins in the state forward where
the robot moves forward until it encounters any of the conditions that will
change the movement of the robot. This is where the two distinct parts of the
system are separated: line following and obstacle avoidance. If state machines
supported hierarchal decomposition this would be a good use for it but the
formalism only supports “flat” designs. Line following will be explained first.
Depending on which light sensor has moved away from the line, a transition will
be taken to either turn_right_and_find_line or turn_left_and_find_line.

1All forward states in the state machine state control represent the same action. They are
only named differently since state names must be individual. The same applies to reverse,
turn left etc.

53



Figure 5.4: synchro node

54



Figure 5.5: obstacle present node

Figure 5.6: state control state machine

55



Figure 5.7: turn robot state machine

Both these states will rotate the robot in the relevant direction until it rejoins
the line. At this point a transition will be taken back to the forward state.

The robot switches from line following to obstacle avoidance when it is in the
state forward and the hit_obstacle input becomes true. It then reverses until
the backed_up input becomes true and turns left. When this has completed it
moves forward until the moved_away input (based on a rotation sensor) becomes
true. It then turns right and continues in a straight line. At this stage it can
encounter the obstacle again and if this occurs (indicated by the hit_obstacle
input) then it will transition to the reverse state and the process described
above will repeat. This can continue as many times as necessary to move past
the obstacle. On the other hand, if it moves forward without bumping into
any obstacles then it turns right and moves forward again until it rejoins the
line. Again, if it should hit an obstacle during this, it will perform the loop
reverse2, turn_left2, forward3, turn_right3, forward4 as many times as
necessary to move around the obstacle. Eventually it will rejoin the line and
when this occurs it will turn left and return to the main state, forward.

The second state machine used in compute_state (section 5.2.2provides the
turning control for the robot (figure 5.7). When this state machine is reset it
will first turn the synchro drive wheels in so it can rotate on the spot. Next, it
enters the state rotating and this will continue until the rotation_complete
input becomes true. Notice that the direction of rotation (i.e. turn left or right)
is not of importance since this is derived outside the state machine. Lastly, it
turns all the wheels out by 45 degrees thereby realigning them before moving
to the state done. The done state is used to communicate out of the machine
that the turning process is complete.

This machine is not active all the time and when it is inactive it is important
that it does not enter any states which affect the global output variables. For this
reason a wait state has been introduced as the first transition in the machine.
Therefore, on each cycle the state machine’s reset input is true; the only state

56



that will be reached is wait, which has no effect on the rest of the system.

Compute state node

Now that the state machines embedded in compute_state have been described
the rest of the node can be explained more clearly. First we will focus on the
supporting code for the state machine state_control (figure 5.8). Despite the
fact state_control has many outputs, they can be grouped into four different
output situations. The states corresponding to forward, reverse, turn right and
turn left are grouped using OR gates to produce one output for each. From now
on, these will be referred to as the outputs of state_control rather than its
real outputs. When the robot is turning to rejoin the line, it is just a special
case of the turn right or turn left state, but instead of stopping after 90 degrees,
it should stop after the relevant light sensor is on top of the line again.

First, input processing associated with the forward output will be discussed.
When the robot must move forward for a certain distance, it must be informed
when the distance has elapsed. This is computed using the node true_after_number
which has already been seen in section 4.2.2. True_after_number is reset us-
ing a rising_edge node, which is triggered when the robot enters one of the
forward states. It produces a true output when rotation_2’s reading has in-
creased by the constant rots_to_move_away. Finally, its output is passed to
the input moved_away of state_control.

An almost identical procedure is followed for the reverse output of state_control.
The only exception is that as the robot will be moving backwards, the rotation
sensor’s reading will be decreasing therefore the node true_after_negative_number2

is used instead. The distance the robot should backup is also different to
that when it is moving forward around an obstacle. Therefore the constant
rots_for_backup is used to determine when the robot has reversed far enough.
The output of this is passed into the input backed_up of state_control. Note
that PRE (previous value) operators are used to prevent recursion from appearing
in the design.

The outputs of state_control that instruct the robot to perform turns
are considerably more complicated than those for forward and reverse. Some
of this complexity has been encapsulated in the turn_robot state machine, so
its effect on the system must be considered before its impact on the inputs of
state_control is discussed.

The subsystem for turning the robot does not distinguish between turns in
either direction; the direction is only used for setting the global variables. For
this reason, the outputs for turning left and right of state_control are com-
bined using an OR gate. This is inverted and then used for initialising the state
machine turn_robot. Before the inversion, it is passed to a rising_edge node
which produces the reset condition for the node turn_control. Turn_control’s
function is to pre-process the inputs for the turn_robot state machine and will
be described individually later in this section. The inputs on_line1, on_line2,
rotation_1 and rotation_2 are all needed to perform turns and as such they
are passed to the turn_control node.

The turn_robot machine sets the output variable gv_turning_in when
the synchro drive wheels are turning in and gv_turning_out when the wheels

2true after negitive number is abbreviated to true after nve number in the figures

57



Figure 5.8: compute state node

58



Figure 5.9: turn control node

are returning to their normal position. The rotating output of turn_robot
is then combined with the original turning outputs from state_control to
define the direction in which the robot should be rotating. Therefore, the global
variable gv_turning_right will become true if the robot is rotating right and
gv_turning_left will be true if the robot is rotating left. When the turn is
complete, the output done of turn_robot will become true and is passed back as
an input to state_control. Thereby combining the different types of rotations
(either 90 degrees or until a light sensor is on a line) into one input.

Turn control node

Turn_control (figure 5.9) is responsible for creating the inputs wheels_rotated_45
and rotation_completed for the state machine turn_robot. The input wheels_rotated_45
is the simpler of the two since the condition for it to be true is identical for all
kinds of rotations that the robot can perform. It uses the nodes true_after_number
and true_after_negative_number to produce a true output when the wheels
have been correctly turned in or turned out, respectively. It is because the
wheels rotate both in and out that two nodes are needed for counting rotations
since in one direction the rotation sensor’s reading will be increasing and the
other, decreasing. The output of both nodes is joined using an OR gate and pro-
duced as an output of the node. The reset condition for these nodes is handled
externally and passed as an input to the system.

In the case where the robot must perform a 90 degree turn on the spot,
the method described above is reused. However, the robot will also be rotating
when it is trying to rediscover the line, thereby potentially triggering either of

59



the true_after nodes. Therefore, the OR gate output for a 90 degree rotation is
only allowed to pass through if the global variables gv_rotating_right_and_find_line
and gv_rotating_left_and_find_line are both false, indicating that the robot
is not trying to find the line. The other cases, on_line1 and on_line2 are also
filtered using the global variables that determine the current operation the robot
is performing. All the outputs are then joined using an OR gate and passed by
the output rotation_completed to turn_robot.

5.2.3 Implementation

Due to the large number of sensors required, the design was implemented on
two RCXs using the communication algorithm from section 3.3. However, since
only three actuators are required for the system, these can all be handled on
the master RCX. Therefore, information only needs to pass in one direction,
from the slave to the master. For this reason, the communication algorithm was
altered to reflect the need for one-way only communication. This also had the
advantage of reducing the latency from approximately 100 milliseconds to 50
milliseconds.

time_t receive_time;

int msg;
int timeout;

wakeup_t msg_or_timeout_wakeup(wakeup_t ignore)
{
return ( msg || ((get_system_up_time() - receive_time) > 100) );

}

void my_integrity_handler(const unsigned char *data, unsigned char len)
{
receive_time = get_system_up_time();
copy_incomming_data(incomming_data, data, PACKET_SIZE);
msg = 1;

}

int lnp_thread()
{

while (1) {

wait_event(msg_or_timeout_wakeup, 0);
if (msg == 0) //no msg, but we’ve woken up > so must have timeout
{
//timeout occurred
timeout = 1;

}
else
{
timeout = 0;

60



//got reply
}
msg = 0;

}
}

In the new algorithm (shown above), the master still has a separate thread
for managing the communication but never sends any packets. The only function
of the thread now is to check that messages are received from the slave regularly.
If they are not, it sets a timeout variable that is passed to the reactive kernel in
the comms_ok input. When a message is received, the time at which this occurs
is stored in a variable receive_time. The function called by wait_event tests
the difference between the current system time and the last time a message
arrived. If it is greater than 100ms, then a timeout has occurred and this is set
in lnp_thread.

int msg;
unsigned char packet[3];

int main(int argc, char *argv[])
{
ds_active(&SENSOR_1);
ds_active(&SENSOR_2);
ds_active(&SENSOR_3);
while(1) {
packet[0] = LIGHT_1;
packet[1] = LIGHT_2;
packet[2] = LIGHT_3;
lnp_integrity_write(packet,3);
msleep(10);

}
}

Since the slave program (above) no longer has to process incoming messages,
it becomes very simple. It enters a non-terminating loop which repeatedly builds
packets out of the light sensor readings, sends them and then pauses to reduce
the chance of message collisions.

The remainder of the program was generated using SCADE2lego from sec-
tion 3.2. It was called as follows:

SCADE2lego synchro -I 3 rotation_1 rotation_2 light_3
-o Forward_A Back_A Speed_A Forward_B Back_B Speed_B
Forward_C Back_C Speed_C LCD_INT

The script is only informed of the sensors that are present on the master
brick. These include the two rotation sensors and the one touch sensor. They
were chosen since they must always be reacted to instantly and cannot afford
the 50 milliseconds delay from the slave. For example, a delay in reading the
touch sensor might result in the robot crashing into an obstacle, and any delay
on the rotation sensors will result in the robot not moving the expected amount.

61



The extra code for the master detailed above was inserted into the code
produced by the SCADE2Lego script. Next, the main driving procedure was
augmented with the code to support the communication as well as three extra
input procedure calls for the sensors on the remote brick. One of the procedures
is shown below in addition to how it is called in the main driving loop:

void I_light_4(_C_synchro* ctx, _int V)
{

ctx->_I3_light_4 = V;
}

I_light_4(&the_ctx, incomming_data[0]);

5.3 Testing

The reasoning behind the testing of robots produced in this project is described
in section 4.4.1 and this should be consulted before reading this section. The
test cases developed for this robot are as follows:

• The robot correctly follows a line that turns both sharply and gently in
either direction

– PASSED - trivial to test, different lines were used with turns varying
in sharpness and direction. However, the robot is very slow at line
following and this will be commented on in the evaluation.

• The robot should successfully detect an obstacle using either its bumper
or the light sensor detection mechanism.

– PASSED - providing the obstacle is of the correct size to trigger the
bumper it is always detected. The light sensor is less reliable at
detecting obstacles, but with the bumper as a backup, obstacles are
always eventually detected.

• When an obstacle is encountered, the obstacle avoidance algorithm should
be correctly executed.

– PASSED - testing the obstacle avoidance algorithm breaks down into
three parts. The first is to test a small obstacle that the robot will
not hit again after its initial collision. The next is an arbitrarily
long obstacle in the direction at 90 degrees to the line. This requires
successive bumps to manoeuvre around and therefore it is important
that the robot keeps its orientation correct through precise turns.
Finally, the case of an arbitrarily long obstacle in the direction of
the line must be tested. This is identical to the last test except the
direction of the turns the robot must complete are different

• Once an obstacle has been successfully avoided, the (line following) light
sensors should correctly detect the line again and the robot should proceed
to follow it.

– PASSED - the last stage of a number of obstacle avoidance runs were
observed for correct redetection of the line.

62



5.4 Evaluation

The synchro wheelbase used in the robot was a mixed success. It could repeat-
edly perform very precise turns with almost no error accumulation, but with
an exceptionally slow turning speed. Currently, for the robot to perform a 90
degree turn, it takes about 10 seconds for the wheels to orientate themselves in-
wards and the same again outwards (the time to rotate is negligible), therefore,
requiring a total of 20 seconds to rotate. For manoeuvring around obstacles,
this is not a problem since precision is paramount. However, for following a
line, many small corrections are required making this a very slow line follower.
In retrospect it is possible that the two problem domains were too far removed
meaning that a good solution for both was not achievable. In this case however,
the choice had to be sacrificing line following efficiency over precise obstacle
avoidance.

Some success was attained when using a light sensor to detect obstacles. If
the lighting conditions were quite dark and the obstacles light-coloured, then
the light sensor could usually detect the obstacle before the touch sensor. This
is in spite of the delay brought about by the message passing to the master brick

The protocol developed for communication between multiple RCXs was fi-
nally put to use in this project. Regrettably, it was not implemented in its
complete form, as no actuators were needed to be controlled by the slave brick.
However, its value has already been proven since, if the extra sensors provided
by the slave were not available, this robot would not have been possible.

Furthermore, in the design, a real-world example of a concept conceived in
section 3.3.3 was implemented. The system is set into a safe state when com-
munication fails between the two bricks. Using the comms_ok input and the
input and output filters, the system effectively shields itself against any com-
munication problems, thereby reducing the danger introduced by asynchronous
communication in a synchronous reactive system. In this situation, communi-
cation never failed since the bricks are fixed to point at each other, but when
tests were conducted involving intentionally stopping the communication, the
system did correctly enter and exit the safe state.

The SCADE design for this robot has shown the use of state based for-
malisms inside dataflow equations to attain the best of both formalisms. Despite
the fact that state machines are very simple the impact they have on dataflow
designs is profound. Control concepts that were originally almost impossible to
program in dataflow terms are now simply expressed as embedded state ma-
chines. This allows the designer to consider the system in an extra level of
abstraction, since state machines can be created and simulated independently
and then dataflow equations built up around them as supporting code. It should
also be noted that this inverted the hierarchy of abstraction in the design, with
the state machine responsible for the main control being placed in a low level
node.

This idea recurs with the use of global variables. The designer can create a
simple abstract mapping to global variables while working deep in the design.
Then back at the top level of the design, these can be mapped to system outputs
without concern for low level details. For example, the design in this chapter
used a variable gv_forward to signal when the robot should move forward. At
the top level (in the node synchro) this was mapped to the motor outputs in
a way that made the robot move forward when it was true. Needless to say,

63



it also helps the understandability of the system by reducing the amount of
connections needed.

64



Chapter 6

Conclusion

6.1 Overview of Work Completed

The first products of this project were scripts for enabling a Lustre or SCADE
design to be translated into code that can be executed on the RCX. A script
developed by Christophe Mauras provided a starting point for the work [22].
First, Mauras’s work was extended by translating and updating the original
script. The operation of the script was then further simplified while improving
the functionality of light sensors and LCD control.

Next, several methods for performing the compilation of a SCADE design
to BrickOS were investigated. The results of this concluded that the best way
to translate a SCADE design to BrickOS code would be to run SCADE’s own
internal code generation and then execute a custom script on the output pro-
duced. The script developed is relatively easy to use and supports all SCADE
features except Safe State Machines. Pre-built input and output procedures
provide functionality for the most commonly used features of the RCX.

An RCX is severely limited in its input and output capabilities; therefore, the
next piece of work aimed to address this. It involved developing a protocol for
communication between two RCXs, thereby enabling one RCX to take control
of another’s sensors and actuators. The solution developed uses two RCXs, one
executes the reactive kernel and is considered the master. The second simply
passes its input/output capabilities to the master. The problems this introduces
into the synchronous hypothesis were also investigated, and a possible solution
was devised. This involved detecting that communication had failed and setting
the system into a safe state until communication was restored.

With a method for compiling a SCADE design to the Lego architecture now
in place, work could proceed on designing robots to illustrate the key aspects
of programming in the synchronous language domain. The first robot produced
was a simple line follower. The motivation behind this robot was simply to show
the reader a basic design produced in Lustre and SCADE and compare the two.
This link was established since all further designs in this project have only been
considered in SCADE.

The next robot produced was a brick sorter. This had the advantage of only
dealing with an internally changing environment; therefore, the system can only
change in a limited number of ways. Because of this it was possible to introduce

65



some monitoring in the main element that manipulates the environment, the
conveyor belt. Using a rotation sensor the robot could successfully detect, and
with the aid of a human operator, recover from, a jam on the conveyer belt.

The last robot to be built was the most ambitious of the project; a line
follower with obstacle avoidance capabilities. Most of the complexity arose from
not knowing the nature of the environment beforehand. The Lego design in this
case was entirely self built and utilised an advanced locomotion technique known
as a synchro drive. This provided the robot with the ability to perform precise
manoeuvres that were needed for obstacle avoidance. The SCADE design for the
system was also an order of magnitude more complex than the previous robots
since it involved combining state based control with data flow control. This was
deemed necessary because of the state based nature of avoiding obstacles. In
the design, it was shown how simple state machines within SCADE could be
used effectively with data flow equations, thereby combining the best of both
formalisms.

6.2 Conclusions

This project set out to show that Lego Mindstorms is a valid and useful ar-
chitecture for implementing reactive systems produced using SCADE. This has
been shown through development of the compilation script, SCADE2Lego and
the robots designed using SCADE and then implemented in Lego. This also ful-
filled a goal of the project that was to demonstrate the use of Lego Mindstorms
in a teaching environment for reactive systems. It is clear that a course on
synchronous reactive systems could be developed using SCADE for the design
and Lego Mindstorms as the implementation platform.

However, it has been observed that data flow equations by themselves can
only solve a limited set of problems. For problems such as line following and
brick sorting, the data flow approach is an excellent one and produces concise
and easily comprehensible designs. However, as soon as an element of state
based control is required in the design, the data flow approach becomes insuf-
ficient. This is where a combination of the two synchronous formalisms should
be considered. As illustrated in the final robot, combining state machines with
data flow equations is indeed a valid way to design solutions.

Another point that became apparent is that some solutions may be better
structured with a functional layer on top of the reactive kernel. Thus, the reac-
tive system continues performing the function it is well suited for, but a higher
level of control is present that manages functions that synchronous languages
are not designed for, e.g. pathfinding.

A further area explored was constructing Lego robots. This was approached
from two directions in this project: modifying designs of professionally con-
structed robots and, in the last chapter, building a robot from scratch. The
versatility of Lego as a construction set is unrivalled and is an ideal choice for
building robots to be programmed using any synchronous language.

Sadly, the verification plug-in for SCADE was not available on the system
that was used for this project. Therefore, no verification could be performed on
the designs produced. This is obviously a very important step in the method-
ology of designing synchronous reactive systems and as such it was regrettable
that no verification could be conducted as part of this project.

66



Videos and more photos of the robots constructed in this project are available
at http://www-student.cs.york.ac.uk/ dhw100/. The web site also explains how
to setup BrickOS for use with the Perl scripts (legolus2 and SCADE2lego).

6.3 Further Work

One obvious area for further work is to extend the functionality offered by the
SCADE2lego script. Support could be added for temperature sensors and the
buttons on the RCX. A considerably more complex addition would be auto-
mated generation of code for both the master and slave RCX’s when more than
three sensors or actuators are required. The caller of the script would need to
indicate which three sensors and actuators require the most precise timing and
these would be assigned to the master RCX. Furthermore, although simple state
machines are handled by the script, because they are embedded in other parts
of the design, safe state machines are not. Therefore, another avenue to explore
would be providing support for safe state machines [29].

Up to now the second RCX in the communication protocol has merely been
considered a slave handing over all control to the master RCX. A better way of
managing communication between two RCXs would be to develop two reactive
kernels and define the communication protocol in terms of inputs and outputs
of the designs, allowing communication to take place more abstractly. Some
work has already been performed in the general case of distributed synchronous
reactive systems [6] but applying this to the Lego Mindstorms architecture would
prove an interesting challenge.

Reactive systems are good at what they do, i.e., based on stimuli they gen-
erate output signals. However, they are not well suited for expressing higher
order control algorithms such as pathfinding or logic based reasoning. It would
be interesting, therefore, to investigate whether or not a higher order control
program could be implemented which would provide inputs to the reactive ker-
nel in a more abstract form. An example of this would be a pathfinding program
running externally to the reactive kernel that simply passes, as input, the next
location to which the robot must move.

67



References

[1] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud: The synchronous data
flow programming language LUSTRE, Proceedings of the IEEE , Vol. 79,
No. 9, September, 1991, 1305-1320.

[2] A. Benveniste, G. Berry: The synchronous approach to reactive and real-
time systems, Proceedings of the IEEE, Vol. 79, No. 9, September, 1991,
1270-1282.

[3] N. Halbwachs, P. Raymond: A tutorial of Lustre, January 24, 2002.

[4] P. Caspi, D. Pilaud, N. Halbwachs, J. A. Plaice: LUSTRE: a declarative
language for programming synchronous systems, 14th ACM symposium on
principles of programming languages, Munich, January, 1987.

[5] N. Halbwachs, F. Lagnier, C. Ratel: Programming and verifying realtime
systems by means of the synchronous dataflow programming language Lus-
tre, IEEE transactions on software engineering, Vol. 18, No. 9, September,
1992.

[6] N. Halbwachs (1993) Synchronous programming of reactive systems,
Kluwer Academic Publishers

[7] Frdric Rocheteau and Nicolas HALBWACHS: POLLUX: A LUSTRE based
hardware design environment 1994

[8] J. R. Mc Graw: The val language: Description and analysis, ACM
TOPLAS, 4(1), January 1982.

[9] Kahn, G., The semantics of a simple language for parallel programming,
Proc. IFIP Congress ’7, North Holland, 1974.

[10] F. Boussinot and R. de Simone. The ESTEREL language. In Proceedings
of the IEEE, pages 79(9):1293-1304, September 1991.

[11] D. Harel and A. Pnueli: On the devolpment of reactive systems, Logics and
Models of Concurrent Systems, NATO ASI Series, Vol.13, K. R. Apt, Ed.
New York: Springer-Verlag, pp. 477-498, 1984.

[12] A. Pnueli: Applications of temporal logic to the specification and verfica-
tion of reactive systems: A survey of current trends, in Current Trends in
Concurrency, de Bakker et al., Eds., Lecture Notes in Computer Science,
Vol. 224, Berlin, GermanyL Springer-Verlag, pp. 510-584, 1986.

68



[13] D. Baum, M. Gasperi, R. Hempel, L. Villa: Extreme Mindstorms - An
advanced guide to Lego Mindstorms, 2000.

[14] M. Ferrari, G. Ferrari, R. Hempel: Building Robots With Lego Mindstorms,
2002

[15] Esterel Technologies - http://www.esterel-technologies.com

[16] Lego Mindstorms Website - http://mindstorms.lego.com

[17] pbForth Home Page - http://www.hempeldesigngroup.com/lego/pbForth/

[18] LeJOS: Java for the RCX - http://lejos.sourceforge.net/

[19] MindStorms RCX Sensor Input Page -
http://www.plazaearth.com/usr/gasperi/lego.htm

[20] BrickOS Home Page - http://brickos.sourceforge.net/

[21] Scade v4.2 Reference Manual

[22] Christophe Mauras & Martin Richard: Reactive Languages and Lego Mind-
stroms - http://www.emn.fr/x-info/lego/

[23] VERIMAG - http://www-verimag.imag.fr/

[24] Lustre-V4 Manual - Pascal Raymond

[25] Nancy Leveson: Medical Devices: The Therac-45

[26] Lego Mindstorms Constructopedia

[27] Mindsensors - http://www.mindsensors.com

[28] An industral conveyer belt system - Lego Model Number: 9701-6, Lego
Dacta Set

[29] Charles Andre: Semantics of S.S.M (Safe State Machines)

69



Appendix A

Code for Legolus2

#!/usr/bin/perl

# File : legolus

# Author : Christophe Mauras

# Created On : december 1, 99

# needs : lustre, poc

# Modified by David White

$name = shift(@ARGV);

$node = shift(@ARGV);

if ($name) {
if (!-e "${name}.lus") {print "Sorry, ${name}.lus not found\n"; exit 1 ;}

system "lustre ${name}.lus ${node} -o ${name}.oc";
system "poc ${name}.oc -o ${name}.c";
system "rm ${name}.oc ${name}.h";

open (IN, "${name}.c") ||

print "cannot open ${name}.c for reading \n" ;

if (!open (OUT, ">${name} ${node}.c"))
{ close IN ; print "cannot open ${name} ${node}.c for writing \n" ; }

print OUT <<Preamble;

/*********************************************/

/* Generated by legolus using lustre and poc */

/*********************************************/

#include <conio.h>
#include <unistd.h>
#include <dsensor.h>
#include <dmotor.h>
typedef int boolean;

typedef int integer;

typedef char* string;

typedef float float;

typedef double double;

#define false 0

#define true 1

int modulo (a,b)

int a,b;

{return(a % b);}
integer real2int (r)

70



float r;

{return((int) r);}
float int2real (n)

integer n;

{return((float) n);}

/**********************/

/* LUSTRE Generated: */

/* - context struct */

/* - automata reset */

/* - inputs reset */

/**********************/

Preamble

$LineNumber = 0; $copier = 0;

while (($in line=<IN>)) {
++$LineNumber;

if ($in line =~ /^typedef/) {$copier = 1;};
if ($copier == 1) { print OUT "$in line";};
if ($in line =~ /^}/) {$copier = 0;}

}
close IN;

open (IN, "${name}.c");
$LineNumber = 0; $copier = 0;

while (($in line=<IN>)) {
++$LineNumber;

if ($in line =~ /^\w*\s*void\s*\w+ reset/) {$copier = 1;}
if ($copier == 1) {print OUT "$in line"; }
if ($in line =~ /^}/) {$copier = 0; }

}
close IN;

print OUT <<Output;

/********************/

/* Static Variables */

/********************/

static ${node} ctx the ctx;

static unsigned first A, dir A, first B, dir B, first C, dir C;

/*********************/

/* Output Procedures */

/*********************/

void ${node} O Forward A(void* cdata, boolean v)

{if (v) dir A -= 2;

if (first A) first A = 0;

else {motor a dir(dir A);dir A = 3;first A = 1;}}

void ${node} O Back A(void* cdata, boolean v)

{if (v) dir A -= 1;

if (first A) first A = 0;

else {motor a dir(dir A);dir A = 3;first A = 1;}}

71



void ${node} O Speed A(void* cdata, integer v)

{motor a speed(v);}

void ${node} O Forward B(void* cdata, boolean v)

{if (v) dir B -= 2;

if (first B) first B = 0;

else {motor b dir(dir B);dir B = 3;first B = 1;}}

void ${node} O Back B(void* cdata, boolean v)

{if (v) dir B -= 1;

if (first B) first B = 0;

else {motor b dir(dir B);dir B = 3;first B = 1;}}

void ${node} O Speed B(void* cdata, integer v)

{motor b speed(v);}

void ${node} O Forward C(void* cdata, boolean v)

{if (v) dir C -= 2;

if (first C) first C = 0;

else {motor c dir(dir C);dir C = 3;first C = 1;}}

void ${node} O Back C(void* cdata, boolean v)

{if (v) dir C -= 1;

if (first C) first C = 0;

else {motor c dir(dir C);dir C = 3;first C = 1;}}

void ${node} O Speed C(void* cdata, integer v)

{motor c speed(v);}

void ${node} O LCD 0(void* cdata, integer v)

{cputc 0((unsigned) v);}

void ${node} O LCD 1(void* cdata, integer v)

{cputc 1((unsigned) v);}

void ${node} O LCD 2(void* cdata, integer v)

{cputc 2((unsigned) v);}

void ${node} O LCD 3(void* cdata, integer v)

{cputc 3((unsigned) v);}

void ${node} O LCD 4(void* cdata, integer v)

{cputc 4((unsigned) v);}

void ${node} O LCD INT(void* cdata, integer v)

{lcd int((unsigned) v);}

void ${node} O LCD 5(void* cdata, boolean v)

{if (v){dlcd show (LCD 5 MID);}
else {dlcd hide (LCD 5 MID);} }

/**********************************************/

/* Input Procedures & Automata Step Procedure */

/**********************************************/

72



Output

open (IN, "${name}.c");
$LineNumber = 0; $copier = 0;

while (($in line=<IN>)) {
++$LineNumber;

if ($in line =~ /^.* I .*/) {$copier = 1; }
if ($copier == 1) { print OUT "$in line"; }
if ($in line =~ /^}/) {$copier = 0;}

}
close IN;

open (IN, "${name}.c");
$LineNumber = 0; $copier = 0;

while (($in line=<IN>)) {
++$LineNumber;

if ($in line =~ /^\w*\s*void\s*\w+ step/) {$copier = 1;}
if ($copier == 1){ print OUT "$in line";};

}
close IN;

print OUT <<TheMain;

/*************/

/* Main Loop */

/*************/

int main(int argc, char *argv[])

{
time t temp time = get system up time();

${node} reset(&the ctx);

dir A = 3; dir B = 3; dir C = 3;

first A = 1; first B = 1; first C = 1;

ds active(&SENSOR 1);

ds active(&SENSOR 2);

ds active(&SENSOR 3);

ds rotation set(&SENSOR 1, 0);

ds rotation set(&SENSOR 2, 0);

ds rotation set(&SENSOR 3, 0);

ds rotation on(&SENSOR 1);

ds rotation on(&SENSOR 2);

ds rotation on(&SENSOR 3);

while(1){
if (SENSOR 1<0xf000)

{${node} I touch 1(&the ctx, true);}
else

{${node} I touch 1(&the ctx, false);}
if (SENSOR 2<0xf000)

{${node} I touch 2(&the ctx, true);}
else

{${node} I touch 2(&the ctx, false);}
if (SENSOR 3<0xf000)

{${node} I touch 3(&the ctx, true);}
else

{${node} I touch 3(&the ctx, false);}

73



${node} I light 1(&the ctx, LIGHT 1);

${node} I light 2(&the ctx, LIGHT 2);

${node} I light 3(&the ctx, LIGHT 3);

${node} I rotation 1(&the ctx, ROTATION 1);

${node} I rotation 2(&the ctx, ROTATION 2);

${node} I rotation 3(&the ctx, ROTATION 3);

${node} step(&the ctx);

msleep((int) 10 - (get system up time() - temp time));

temp time = get system up time();

}
}
TheMain

close OUT;

system "rm ${name}.c";
system "rm -f ${node}.ec";
print "C code in : ${name} ${node}.c \n";

print "Now type : make ${name} ${node}.lx \n";

print "and then : dll ${name} ${node}.lx \n";

}

if (!${name}) {
print STDERR <<EndOfUsage;

Usage: $0 file nodename

file.lus must contain node:

node nodename (

touch 1: bool;

touch 2: bool;

touch 3: bool;

light 1: int;

light 2: int;

light 3: int;

rotation 1: int;

rotation 2: int;

rotation 3: int

)

returns (

Forward A, Back A :bool ;

Speed A : int;

Forward B, Back B :bool ;

Speed B : int;

Forward C, Back C :bool ;

Speed C : int;

LCD 0 : int;

LCD 1 : int;

LCD 2 : int;

LCD 3 : int;

LCD 4 : int;

LCD 5 : bool

);

EndOfUsage

exit 1;

}

exit 0;

74



75



Appendix B

Code for SCADE2Lego

#!/usr/bin/perl

# SCADE2lego - David White

# Parts taken from legolus by Christophe Mauras

$node = shift(@ARGV);

print "\n";

if ($node) {
if (!open (OUT, ">out ${node}.c")) {

print "Cannot open out ${node}.c for writing \n";

exit 1;

}
print OUT <<Section1;

/**************************/

/* Definitions & Includes */

/**************************/

#include <conio.h>
#include <unistd.h>
#include <dsensor.h>
#include <dmotor.h>

#define true 1 // Required for booleans

#define false 0

typedef int int; // Required for SCADE’s own types

typedef int bool;

/*******************************/

/* Constants (SCADE Generated) */

/*******************************/

Section1

# Copy constants

if (open (CONST, "${node} const.c")) {
while (($in line=<CONST>)) {

if (($in line =~ /const (.*)/) && (!($in line =~ /-const(.*)/))) {
print OUT "$in line";

76



}
}
close CONST;

}
else {

print "Cannot open ${node} const.c for reading - no problem if your

program dosn’t use any constants\n" ;

print OUT "// This design uses no constants.\n";

}

print OUT <<Section global;

/*******************************/

/* Global Variables (SCADE Generated) */

/*******************************/

Section global

# Copy global variables

if (open (GLOBAL, "${node} global.c")) {
while (($in line=<GLOBAL>)) {

if (($in line =~ /bool (.*)/) || ($in line =~ / int (.*)/)) {
print OUT "$in line";

}
}
close GLOBAL;

}
else {

print "Cannot open ${node} global.c for reading - no problem if your

program dosn’t use any global variables\n" ;

print OUT "// This design uses no global variables.\n";

}

print OUT <<Section2;

/***********************************/

/* Node Contexts (SCADE Generated) */

/***********************************/

Section2

open (HEADER, "${node}.h") || die "Can’t open ${node}.h - exiting...";

$copier = 0;

while ($in line=<HEADER>) {
if ($in line =~ /typedef(.*)/) {

$copier = 1;

}
if ($copier == 1) {

print OUT "$in line";

}
if ($in line =~ /}(.*)/) {

$copier = 0;

}
}

77



close HEADER;

print OUT <<Section3;

static C ${node} the ctx; // Main node (${node}) context

static unsigned first A, dir A, first B, dir B, first C, dir C;

/*********************/

/* Output Procedures */

/*********************/

void O Forward A(bool v)

{
if (v)

dir A -= 2;

if (first A)

first A = 0;

else

{
motor a dir(dir A);

dir A = 3;

first A = 1;

}
}

void O Forward B(bool v)

{
if (v)

dir B -= 2;

if (first B)

first B = 0;

else

{
motor b dir(dir B);

dir B = 3;

first B = 1;

}
}

void O Forward C(bool v)

{
if (v)

dir C -= 2;

if (first C)

first C = 0;

else

{
motor c dir(dir C);

dir C = 3;

first C = 1;

}
}

78



void O Back A(bool v)

{
if (v)

dir A -= 1;

if (first A)

first A = 0;

else

{
motor a dir(dir A);

dir A = 3;

first A = 1;

}
}

void O Back B(bool v)

{
if (v)

dir B -= 1;

if (first B)

first B = 0;

else

{
motor b dir(dir B);

dir B = 3;

first B = 1;

}
}

void O Back C(bool v)

{
if (v)

dir C -= 1;

if (first C)

first C = 0;

else

{
motor c dir(dir C);

dir C = 3;

first C = 1;

}
}

void O Speed A( int v)

{
motor a speed(v);

}

void O Speed B( int v)

{
motor b speed(v);

}

void O Speed C( int v)

{

79



motor c speed(v);

}

void O LCD INT( int v)

{
lcd int((unsigned) v);

}

/********************/

/* Input Procedures */

/********************/

Section3

#Print Input Procedures depending on command line args specified

$input proc calls[0] = "not used";

$input proc calls[1] = "not used";

$input proc calls[2] = "not used";

if (shift(@ARGV) ne "-i") {
die("Incorrect Args (expected -i)");

}
$num inputs = shift(@ARGV);

for ($i=0; $i != $num inputs; $i++) {
$sensor = shift(@ARGV);

if ($sensor eq "-o") {
die("Number of inputs don’t match");

}
#If sensor is light or rotation, print this kind of function

if (($sensor eq "light 1") || ($sensor eq "light 2") || ($sensor eq "light 3") ||

($sensor eq "rotation 1") || ($sensor eq "rotation 2") || ($sensor eq "rotation 3")) {
print OUT <<input sensor int;

void I ${sensor}( C ${node}* ctx, int V)

{
ctx-> I${i} ${sensor} = V;

}
input sensor int

}
#If sensor is touch print this kind of function

elsif (($sensor eq "touch 1") || ($sensor eq "touch 2") || ($sensor eq "touch 3")) {
print OUT <<sensor bool;

void I ${sensor}( C ${node}* ctx, bool V)

{
ctx-> I${i} ${sensor} = V;

}
sensor bool

}
else {

die("Unexpected Input: ".$sensor." - exiting...");

}
$input proc calls[$i] = ${sensor}

}

80



#Copy initilisation and cyclic procedures from $Node.c

open (NODE, "${node}.c");
$copier = 0;

while (($in line=<NODE>)) {
if ($in line =~ /\/\* ============== \*\//) {$copier = 1; }
if ($in line =~ /SCADE CG V4.2.1/) {$copier = 0;}
if ($copier == 1) { print OUT "$in line"; }

}
close NODE;

#Print first part of main loop

print OUT <<Section4;

/*************/

/* Main Loop */

/*************/

int main(int argc, char *argv[])

{
time t temp time = get system up time();

${node} init(&the ctx);

dir A = 3; dir B = 3; dir C = 3;

first A = 1; first B = 1; first C = 1;

Section4

#Print calls to set active sensors

$num rotation sensors = 0;

for($j=0; $j<3; $j++) {
if (($input proc calls[$j] =~ /light/) || ($input proc calls[$j] =~ /rotation/)) {

if ($input proc calls[$j] =~ /1/) {
print OUT (" ds active(&SENSOR 1);\n");

}
if ($input proc calls[$j] =~ /2/) {

print OUT (" ds active(&SENSOR 2);\n");

}
if ($input proc calls[$j] =~ /3/) {

print OUT (" ds active(&SENSOR 3);\n");

}
}

}

#Print initilisation calls for rotation sensors

for($j=0; $j<3; $j++) {
$sensor num = $j+1;

if ($input proc calls[$j] =~ /rotation/) {
$num rotation sensors++;

print OUT <<rot setup;

ds rotation set(&SENSOR ${sensor num}, 0);

ds rotation on(&SENSOR ${sensor num});
rot setup

}
}

81



#Print Delay stmt so rotation sensors have time to initilise

if ($num rotation sensors > 0) {
print OUT <<rot delay;

msleep(100);

rot delay

}

#Print While Part

print OUT (" while(1)\n {\n");

#Print Input Calls

for ($i=0; $i<3; $i++) {
$uppercase = uc($input proc calls[$i]);

$sensor num = $i+1;

if ($input proc calls[$i] ne "not used") {
print OUT (" I ${input proc calls[$i]}(&the ctx, ${uppercase});\n");

}
}

#Print call to main node’s cyclic function

print OUT (" ${node}(&the ctx);\n");

(shift(@ARGV) eq "-o") || die("Expected -o as next argument");

$num outputs = shift(@ARGV);

for ($i=0; $i<$num outputs; $i++) {
$output = shift(@ARGV);

if ($output eq "Forward A") {
print OUT (" O Forward A(the ctx. O${i} Forward A);\n");

}
elsif ($output eq "Forward B") {

print OUT (" O Forward B(the ctx. O${i} Forward B);\n");

}
elsif ($output eq "Forward C") {

print OUT (" O Forward C(the ctx. O${i} Forward C);\n");

}
elsif ($output eq "Back A") {

print OUT (" O Back A(the ctx. O${i} Back A);\n");

}
elsif ($output eq "Back B") {

print OUT (" O Back B(the ctx. O${i} Back B);\n");

}
elsif ($output eq "Back C") {

print OUT (" O Back C(the ctx. O${i} Back C);\n");

}
elsif ($output eq "Speed A") {

print OUT (" O Speed A(the ctx. O${i} Speed A);\n");

}
elsif ($output eq "Speed B") {

print OUT (" O Speed B(the ctx. O${i} Speed B);\n");

}
elsif ($output eq "Speed C") {

print OUT (" O Speed C(the ctx. O${i} Speed C);\n");

}

82



elsif ($output eq "LCD INT") {
print OUT (" O LCD INT(the ctx. O${i} LCD INT);\n");

}
else {

die("Unrecognised output: ".$output);

}
}

#Print loop end and timeing code

print OUT <<end loop;

if ((get system up time() - temp time) > 0) {
msleep((int) 10 - (get system up time() - temp time));

}
temp time = get system up time();

}
}
end loop

#Finish off

close OUT;

print "BrickOS compatiable C code in : out ${node}.c \n";

}
else {

print "No args specified";

}
exit 0;

83



Appendix C

Code for Communicating
RCXs

84



C.1 Code for Master Brick

#include <conio.h>
#include <unistd.h>
#include <stdlib.h>
#include <dsensor.h>
#include <dmotor.h>
#include <lnp.h>

#define PACKET SIZE 3

tid t lnp thread id;

time t send time;

int msg;

int timeout;

unsigned char incomming data[PACKET SIZE];

unsigned char outgoing data[PACKET SIZE];

void copy incomming data(char *dst, char *src, int size)

{
int i;

for (i=0; i<size; i++) {
dst[i] = src[i];

}
}

wakeup t msg or timeout wakeup(wakeup t ignore)

{
return ( msg || ((get system up time() - send time) > 100) );

}

void my integrity handler(const unsigned char *data, unsigned char len)

{
copy incomming data(incomming data, data, PACKET SIZE);

msg = 1;

}

int lnp thread()

{

while (1) {

send time = get system up time();

lnp integrity write(outgoing data, PACKET SIZE);

wait event(msg or timeout wakeup, 0);

if (msg == 0) //no msg, but we’ve woken up > so must have timeout

{
//timeout occoured

timeout = 1;

85



}
else

{
timeout = 0;

//got reply

}
msg = 0;

msleep(100);

}
}

int main(int argc, char *argv[])

{
lnp integrity set handler(my integrity handler);

msg = 0;

incomming data[0] = 0;

incomming data[1] = 0;

incomming data[2] = 0;

lnp thread id = execi(&lnp thread,0,0,PRIO NORMAL,DEFAULT STACK SIZE);

while(1) {
//read incomming data into context

//call step procedure

//write to outgoing data here

if (timeout) {
cputs("Tout");

}
else {

lcd int((incomming data[0]*100)+(incomming data[1]*10)+(incomming data[2]*1));

}
//delay

}
}

86



C.2 Code for Slave Brick

#include <conio.h>
#include <unistd.h>
#include <dsensor.h>
#include <dsound.h>
#include <dmotor.h>
#include <lnp.h>

int msg;

unsigned char packet[3];

void my integrity handler(const unsigned char *data, unsigned char len)

{
//setup actuators here (as described in incomming packet)

msg = 1;

}

int main(int argc, char *argv[])

{
msg = 0;

lnp integrity set handler(my integrity handler);

while(1) {
if (msg == 1) {

// create packet from sensors here

lnp integrity write(packet,3);

msg = 0;

}
}

}

87



Appendix D

Complete SCADE Design
for the Brick Sorter

88



Appendix E

Complete SCADE Design
for Line Follower with
Obstacle Avoidance

89


	Introduction
	Literature Review
	Reactive Systems and the Synchronous Approach
	Overview of Synchronous Formalisms and Languages
	Lustre
	Introduction
	Language Overview
	Compilation
	Verification

	SCADE
	Lego Mindstorms and the RCX
	BrickOS
	A small development
	Problem Analysis
	Lego Design
	Lustre Design
	SCADE Design
	Implementation
	Evaluation


	Converting Synchronous Language Designs to Code Executable on the RCX
	Investigation into Lustre Compiling Options
	The Automaton Environment Generated by Pollux
	Previous Work on Lustre Compilation to Lego Mindstorms
	New Perl Script for Lustre Compilation - legolus2

	Investigation into SCADE Compiling Options
	SCADE Design to Lustre v4 Format
	Translating SCADE's C Code to Executable Code on the RCX
	Evaluation of SCADE Compilation Methods
	Environment Generated by Lustre2C
	SCADE2Lego Script - Usage and Description
	Testing of SCADE2lego
	Evaluation

	Communicating RCXs
	Description of BrickOS Features Required for Communication
	Implementation
	Evaluation


	A Brick Sorting Robot
	Problem Analysis
	Design
	Lego Design
	SCADE Design

	Implementation
	Testing
	Testing Methodology
	Test Cases

	Evaluation

	A Line Following Robot with Obstacle Avoidance
	Hardware
	Problem Analysis
	Lego Design
	Implementation 

	Software
	Problem Analysis
	SCADE Design
	Implementation

	Testing
	Evaluation

	Conclusion
	Overview of Work Completed
	Conclusions
	Further Work

	Code for Legolus2
	Code for SCADE2Lego
	Code for Communicating RCXs
	Code for Master Brick
	Code for Slave Brick

	Complete SCADE Design for the Brick Sorter
	Complete SCADE Design for Line Follower with Obstacle Avoidance

