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Abstract. C programs that manipulate list-based dynamic data struc-
tures remain a challenging target for static verification. In this paper
we employ the dynamic analysis of dsOli to locate and identify data
structure operations in a program, and then use this information to au-
tomatically annotate that program with assertions in separation logic.
These annotations comprise candidate pre/post-conditions and loop in-
variants suitable to statically verify memory safety with the verification
tool VeriFast. By using both textbook and real-world examples on our
prototype implementation, we show that the generated assertions are
often discharged automatically. Even when this is not the case, candi-
date invariants are of great help to the verification engineer, significantly
reducing the manual verification effort.

1 Introduction

Handling dynamically allocated linked-list data structures presents a major chal-
lenge in the static verification of C-like programs. Separation logic [15] has been
proposed as a way to tackle this challenge. It extends Hoare logic with assertions
to describe the structure of the heap and allows for local reasoning through the
frame rule, which informally states that, when reasoning about the behaviour of
a command, it is safe to ignore memory locations not accessed by that command.

A well-known tool that applies separation logic is VeriFast [12], a sound
static verifier for C and Java. It modularly checks via symbolic execution [2]
that each function in a program satisfies its contract, i.e., its pre- and post-
condition, which are given as code annotations in separation logic. Through
the frame rule, a program that passes VeriFast verification is guaranteed not
to have memory safety errors such as buffer overflows or overreads, accesses to
uninitialised memory, dereferences of dangling or null pointers and double frees.

The tool has been successfully applied to industrial verification projects, but
it focuses on speed, expressiveness and error diagnosis rather than automation.
In particular, source code annotations must be provided by a skilled verification
engineer so that VeriFast can discharge contracts and invariants automatically.
This limits the tool’s use since it has been estimated that it takes a skilled
verification engineer about one hour to provide the necessary annotations to



verify two lines of source code [16]. Many of the required annotations have little
to do with the functional behaviour to be verified, but instead refer to data
structures, e.g., to ensure that data structure shape is preserved and memory
safety is enforced by a data structure manipulating operation.

In this paper we aim to generate these more trivial annotations for data
structure manipulating code automatically, so as to reduce the burden on the
verification engineer. We do this by utilising information produced as a by-
product of the dynamic analysis tool dsOli (Data Structure Operation Location
and Identification) [21]. dsOli combines machine learning and pattern matching
to automatically locate and identify operations on linked-list data structures in
C programs (Sec. 2) and outputs a set of instantiated operation templates, where
each template describes a data structure operation performed by the program,
e.g., inserting to the front of a singly-linked-list (SLL).

We provide annotation templates that are instantiated and injected into the
program’s source code by selecting appropriate information from a correspond-
ing instantiated operation template provided by dsOli (Sec. 3). Such information
is made available by a new XML-based dsOli output, which permits extraction of
data structure shape transformations and the responsible source code locations.
Collectively, this enables the generation of the following kinds of annotations
required by VeriFast: function contracts, which specify data structure shape
transformations and the associated memory safety properties; recursive predi-
cates, which describe the recursive shape of data structures such as linked-lists;
in-line annotations, which show where to fold and unfold recursive predicates;
and loop invariants, which specify behavior during list traversal.

In contrast to other approaches for discovering data structure behaviour [1,
13], dsOli does not require the usage of well defined interfaces for data struc-
ture operations. Thus, our approach can detect and annotate operations even
if they are tightly interwoven with other aspects of a program. Moreover, prior
knowledge about the program’s structure or behaviour can be used to select “in-
teresting” execution traces for an efficient and effective analysis, while detection
results may alleviate the automated exploration of related program behaviour.

We have implemented our approach in a prototypic tool-chain and use this
to evaluate its utility to the verification engineer by applying it on textbook
and real-world examples (Sec. 4), of which the latter comprises parts of a web-
server [4] and a key-value store [17]. Overall our findings are very encouraging:
our approach is able to automatically generate the vast majority of annotations
required to verify the list manipulating functions of our examples. Thus, a ver-
ification engineer can spend their time on the more intellectually demanding
points of verification rather than having to specify function contracts for data
structure shape and the numerous required auxiliary annotations. While the
generated annotations may not necessarily be discharged automatically by Veri-
Fast, our experience shows that they still encapsulate useful a-priori knowledge
about the data structure under analysis; indeed, they can often be automatically
discharged after few minor manual revisions.



Related Work. Existing separation logic tools typically generate candidate in-
variants by shape analysis [18], such as Space Invader [23], jStar [8], Hip/Sleek [7],
and SLAyer [3]. Invariants are computed by a combination of (forward) symbolic
execution and abstraction at loop heads. A disadvantage of these tools is that the
analysis does not scale and recovers poorly from over-abstraction. To mitigate
this, recent tools have added a forwards-backwards analysis called abduction [6],
which has been studied in the context of VeriFast [19], and counterexample
elimination using external solvers [3].

Our approach, which builds upon an improved version of dsOli when com-
pared to [21], differs from these related works in that we do not symbolically ex-
ecute the program; rather we generate concrete executions and apply a heuristic
machine-learning process to guess candidate invariants. Therefore, we expect our
technique to increase scalability over symbolic execution when being applied to
large programs or in the presence of concurrency. Improvements over the prior
version of dsOli concern functional unit detection (Sec. 2.2), a new output ex-
change format in XML (Sec. 2.3) and template matching (Sec. 2.3); the latter
has been reimplemented in Prolog, resulting in faster matching and more ex-
pressive templates. Of course, dsOli can only observe behaviour that a program
exhibits when executing. An extensive set of test cases or techniques such as
dynamic symbolic execution [9] may be used to expose interesting behaviour to
dsOli automatically.

In Guo et al. [10], the problem of generating program invariants for data
structure manipulating programs is addressed by means of static shape analysis
rather than dynamic analysis and machine learning. While Guo et al. focus on
generating invariants that hold for programs pruned of code that has no effect
on shape properties, we produce assertions that are meant to be extended by a
verification engineer with the intent to verify properties of the entire program,
e.g., functional correctness. Our work may benefit from adopting the algorithm
for unfolding and folding back recursive predicates presented in [10].

Active register automata learning [11] is used to determine a protocol for
interaction with a data structure or API in situations where suitable example in-
teractions may be generated. Closer to our work is specification mining [1], which
generates specifications from arbitrary program executions. However, these ap-
proaches assume that interaction takes place through a well-defined interface
and aim to generate a specification at that level of abstraction, representing,
e.g., functional correctness. Here, lower level specifications are of interest, with
the goal of proving memory safety properties in the context of VeriFast.

DDT [13] is the closest related work to dsOli and works by exploiting the cod-
ing structure in standard library implementations to identify interface functions
for data structures. As such, it shares similar assumptions with [1] and is thus
not designed for the customised interfaces employed in OS/legacy software and
C programs, or the replicated interfaces that appear due to function in-lining.
In contrast, the machine learning approach of dsOli is more tolerant of how the
code implementing operations is structured (Sec. 2.2).



Fig. 1: An overview of our approach, which comprises dsOli, the annotation gen-
erator and VeriFast.

2 Data Structure Operation Identification

This section presents dsOli, which is responsible for discovering data structure
operations in C source code. The discovered operations will be passed to our
annotation generator (Sec. 3) which inserts source code annotations suitable for
verifying memory safety properties of the operations. An overview of the tool
chain, including the annotation generator, is given in Fig. 1. We illustrate each
stage of the approach by the running example shown in Fig. 2.

2.1 Instrumentation and Preparation

We consider a dynamic data structure to be a set of objects (instances of C
structs) linked by pointers. To locate and identify operations on data struc-
tures we reconstruct a sequence of points-to graphs 〈G0, . . . , Gn〉 from an execu-
tion of the program under analysis [21]. This reconstruction is enabled by first
instrumenting the program, which results in the runtime capture of program
events such as pointer writes and dynamic memory (de)allocation. The result
of program event i is captured by Gi, where 1 ≤ i ≤ n and G0 is empty. By
default we instrument pointer writes where the unwound target is a struct with
a self-reference; however, instrumentation of user-specified types is also possible.

Formally, a points-to graphG = (V, E) is a directed graph comprising a vertex
set V and an edge set E ⊆ V ×V ×N. Vertices in the graph represent either heap
allocated objects or global/stack allocated objects that contain pointer variables,
while edges represent points-to relationships. The key abstraction presented by
a points-to graph is the grouping of related adjacent memory cells into a single
vertex, i.e., using one vertex to represent a struct object. It is for this reason that
we record the offset within an object at which the pointer originates in the third
element of edge tuples. We require a pointer’s target to be the start address of
an object, and hence we do not record the offset into a target vertex.



Vertices are added by two means: either a dynamic memory allocation takes
place, or a pointer is written in a non-dynamically allocated variable. It is nec-
essary to include variables of the latter type since, in addition to forming part
of the points-to structure, they commonly represent entry points to data struc-
tures. Every vertex v added to the graph is tagged with an attribute v.eid = i
recording the event i responsible for its creation, and a unique id v.cid that is
used to track the object represented by the vertex over multiple points-to graphs.
A vertex is removed from the graph when a deallocation event occurs, or when
a stack allocated variable leaves scope; the cids used for removed vertices are
never reused. If applicable, a vertex has attributes v.allocLoc and v.freeLoc refer-
ring to the source code location responsible for the dynamic memory allocation
and deallocation, respectively. Lastly, v.ctype records the concrete type of the
object represented by the vertex (i.e., a C type). An edge e also has an attribute
e.eid recording the corresponding event and, additionally, an attribute e.setLoc

recording the source location of the pointer write. Referring to the example of
Fig. 2, Gi and Gj are points-to graphs corresponding to program states before
and after function push() (line 21) has been invoked.

2.2 Trace Segmentation

The identification of a data structure operation is performed by analysing the
change between the points-to graph before and after the operation. Therefore,
the next task is to determine which segments 〈Gi+1, . . . , Gj〉 ⊆ 〈G1, . . . , Gn〉,
where 0 ≤ i < j ≤ n, of the event sequence potentially constitute operations.
Later, the set of segments S specified in terms of points-to graph pairs (Gi, Gj)
will be passed to the classification stage to identify the operations. In our running
example of Fig. 2, the segment (Gi, Gj) captures the behavior of push().

If dsOli operates in user-assisted mode, the user may manually mark the start
and end of data structure operations and have this information used to compute
the segments. Alternatively, if the approach operates on the assumption that
functions will always perfectly encapsulate data structure operations, then the
start and end of functions can be used to compute the segments. Clearly, this
will include segments that do not correspond to data structure operations, but
these will be filtered later by the classification stage.

The final and most interesting operation location approach alleviates the
function encapsulation assumption, i.e., data structure operations may appear
anywhere in the program, e.g., in multiple locations due to in-lining or through
ad-hoc implementations commonly used for low-level optimisation, e.g., device
driver software. To identify such operations we employ the observation that
programs are, by nature, highly repetitive due to function calls and iterative
structures. We exploit this property to identify the functional units of a pro-
gram by their repeated invocation. The key idea is that, although the concrete
addresses being operated on are different in each invocation, the points-to topol-
ogy around those addresses and the sequence of changes remains similar, and
hence recognisable. More details on this approach may be found in [21].



1 typedef struct Node *Stack;
2

3 struct Node {
4 ElementType Element;
5 struct Node *Next;
6 };
7

8 /*@ predicate SLLNodes_Node (struct←↩
Node *node , int count) =

9 node == 0 ? count ==0 : 0<count/
10 &*& node ->Element |-> _/
11 &*& node ->Next |-> ?next/
12 &*& malloc_block_Node (node)/
13 &*& SLLNodes_Node (next ,count -1);←↩

@*/

14 /*@ predicate SLL_Node(struct Node←↩
*list , int count) =

15 0 <= count
16 &*& list ->Element |-> _
17 &*& list ->Next |-> ?head
18 &*& malloc_block_Node (list)
19 &*& SLLNodes_Node (head , count); ←↩

@*/
20

21 void push(ElementType X, Stack S)
22 //@ requires SLL_Node(S, ?n_0);
23 //@ ensures SLL_Node(S, n_0 +1);
24 {
25 Stack TmpCell;
26 TmpCell = malloc(
27 sizeof(struct Node));
28 if( TmpCell == NULL ) {
29 printf( "Out of space!" );
30 exit(EXIT_FAILURE);
31 }
32 else {
33 //@ open SLL_Node(S, n_0);
34 TmpCell ->Element = X;
35 TmpCell ->Next = S->Next;
36 S->Next = TmpCell;
37 //@ close SLLNodes_Node (S->Next , ←↩

n_0 +1);
38 //@ close SLL_Node(S, n_0 +1);
39 }
40 }

Template graph vertex v ∈ VT

with attributes v.tid & v.ttype

Points-to graph vertex v ∈ VP

with attributes v.cid & v.ctype

Fig. 2: An example of the annotation process for the push() operation from the
Weiss Stack Example [20], which employs an SLL with a header node. The left
drawing shows a template being matched to an invocation of push(). Annota-
tions in italics are constructed automatically from this match as follows: blue
(i.e., lines 8–19) recursive predicates, red (i.e., lines 22 & 23) function contracts
and green (i.e., lines 33, 37 & 38) inline annotations.

2.3 Classifying Data Structure Operations

With the set S of segments to hand we may now proceed to classify the behaviour
observed during a segment. The expected behaviour for each data structure
operation of interest is specified via a manually defined operation template.
Templates for standard data structure operations on lists are included in dsOli
by default, but the user can easily add further templates by specifying them in
an XML syntax. For each segment S ∈ S, a match of each operation template is
attempted and is considered a success if a suitable instantiation of the template’s
elements can be found. Successful instantiations are output in XML format to be
used as input for our annotation generator (Fig. 1). If no match is possible for a
segment, then it is ignored as “noise”; such segments either result from non-user
assisted functional unit identification, where the fact that many segments will not
correspond to data structure operations is an expected artifact of dsOli’s machine
learning approach, or incomplete template coverage, in which case additional
templates may be specified by the user.



Table 1: Operation template attributes exposed to external programs for inter-
preting the associated memory transformation. Example values are taken from
the template (Gpre, Gpost) in Fig. 2.
T.dataStructureKind ∈ {SLL,DLL} Example: SLL
– describes the kind of data structure that the template is intended to identify.

T.manipulationKind ∈ {Insert,Remove} Example: Insert
– determines if the template is designed to identify a node being inserted to or
removed from the data structure.

T.manipulationPosition ∈ {FrontDH,Front,Middle,End} Example: FrontDH
– describes the position at which a node is inserted/removed. DH indicates a
dummy-head node, so that the 2nd element in the list is semantically the front.

T.dataStructureNodeType ∈ {v.ttype : v ∈ (VT
pre ∪ VT

post)} Example: Type2
– the abstract type name for all data structure nodes, which will be mapped to a
concrete C struct type after matching is performed.

T.stableVertices ⊂ {v.tid : v ∈ (VT
pre ∪ VT

post)} Example: {E1,B1,B2}
– the set of template vertex “tid”s that represent data structure nodes that remain
unchanged by the operation. These sufficiently define the neighborhood around the
vertex to be inserted/removed such that we may recognise the operation.

T.differenceVertex ∈ {v.tid : v ∈ (VT
pre ∪ VT

post)} Example: A1
– the template vertex tid that represents the data structure node that is added or
removed.

T.linkageOffset ⊂ {o : (v, w, o) ∈ (ETpre ∪ ETpost)} Example: {Y}
– the set of offsets for pointer(s) that link data structure nodes.

Operation Templates. An operation template T = (GT
pre, G

T
post) is defined

by a pair of graphs that describe the local topological change indicative of the
template attribute T.operationName. In the following, we use superscripts P and
T to distinguish graphs, vertices and edges describing concrete points-to graphs
and template graphs, respectively. To enable automated interpretation of this
topological change, as performed in Sec. 3, we expose additional attributes con-
cerning the template’s intended usage (Table 1). For automation to be successful,
we must constrain our expectation of a linked-list: we define a linked-list to be a
series of nodes all of type DS node type and connected by pointers that always
originate from a node at the same linkage offset, or the same offsets in the case
of DLLs. Currently we only consider operations that insert or remove one node
to or from the list; in other cases there is either nothing to verify as the shape
does not change, or there are multiple insertions/removals which are viewed as
a series of single node changes.

A match against a segment (GP
i , G

P
j ) ∈ S is performed as follows: GT

pre is

matched on the points-to graph before the segment starts, i.e., GP
i , while GT

post

is matched after the segment on GP
j . An attribute T.overrides lists templates less

specific than T , and this means that if T is matched then it overrides the match
of any template T ′ ∈ T.overrides. This is necessary to exclude, e.g., an SLL tem-
plate matching part of a doubly-linked-list (DLL). The attribute T.templateName

uniquely identifies a template as multiple templates may recognise the same op-



eration in different contexts, e.g., differentiating between inserting to the front
of an empty or a non-empty list.

Each template vertex vt has an attribute vt.tid that describes equivalence
between vertices, i.e., if a vertex v in Gpre and a v′ in Gpost have the same
tid, then v and v′ must be matched to the same object in the points-to graphs.
Correspondingly, the element o of some template edge (v, w, o) describes equiv-
alence between offsets and allows one to specify that a set of pointers should all
originate from their respective vertex at the same offset. Lastly, each vt has an
abstract type vt.ttype, which allows vertex matches to be constrained based on C
types. The graphs (GT

pre, G
T
post) in Fig. 2 show a template capable of recognising

inserts to the front of an SLL with a dummy-head node. The mapping between
GT

pre and GT
post enforced via tids is displayed by dotted lines.

Operation Template Matching. An operation template match is performed
by computing match functions m, τ and σ described below. If a solution to all
functions can be found such that the predicates below are satisfied, then the
template T is considered matched and is recorded as ((GP

i , G
P
j ), T,m, τ, σ) in

a set M used in Alg. 1 in Sec. 3. The match is phrased as a Prolog program,
and thus we are instantiating a template’s free variables, i.e., the vertices, edges
and abstract types from GT

pre and GT
post with concrete values from the segment’s

points-to graph pair (GP
i , G

P
j ) ∈ S:

GT
pre = (VT

pre, ETpre), GT
post = (VT

post, ETpost) (1)

GP
i = (VP

i , EPi ), GP
j = (VP

j , EPj ) (2)

m : {v.tid : v ∈ (VT
pre ∪ VT

post)} → {v.cid : v ∈ (VP
i ∪ VP

j )} (3)

To formalise the matching process, let the template and points-to graphs be
written as in (1) and (2). The injective function m (3) then specifies a match from
the set of template vertex tids to a subset of points-to vertex cids. Additionally,
the injective functions τ , from template types to concrete types, and σ, from
template offsets to concrete offsets, enforce consistency over types and offsets,
respectively. We require that every template edge is mapped to a suitable points-
to edge and that this mapping respects σ. This must be checked for both template
graphs, i.e., for (ET , EP ) ∈ {(ETpre, EPi ), (ETpost, EPj )}:

∀(vt, wt, ot) ∈ ET ∃(vp, wp, op) ∈ EP :

m(vt.tid) = vp.cid ∧ m(wt.tid) = wp.cid ∧ σ(ot) = op

Note that, since m is injective and each vertex has a unique tid or cid, each
template vertex must be matched to a corresponding points-to vertex. Lastly,
we must ensure that all vertices mapped by m respect τ :

∀(vt, vp) ∈ (VT
pre×VP

i )∪(VT
post×VP

j ) : m(vt.tid) = vp.cid⇒ τ(vt.ttype) = vp.ctype

An example match is shown in Fig. 2, where m and σ are indicated by dashed
lines between graph vertices, τ = {(Type1, struct Node *), (Type2, struct
Node)} and σ = {(X, 0), (Y, 4)}.



3 Annotation Generation

In this section we discuss our annotation generation approach which is motivated
by our goal of generating function contracts for the data structure operations
discovered by dsOli. In order to fully specify such contracts we will need to
generate recursive predicates, i.e., predicates that describe the recursive nature
of a linked-list’s shape. Further, to automate verification, we generate inline
annotations that specify where to fold and unfold the recursive predicates, and
additionally generate loop invariants that encapsulate behavior during traversals.

The essence of our approach is to take an instantiated operation template,
as presented in Sec. 2.3, and use this to instantiate a number of annotation
templates which we provide for each operation template in our template library.
XML is used as the interchange format between the tools; however, for brevity we
gloss over this and continue employing the mathematical notation introduced in
Sec. 2. By summarising over the output of dsOli, it is possible to specify the anno-
tation generation for any linked-list operation template; thus, this summarisation
removes the necessity to define a one-to-one correspondence between operation
templates and annotation templates. Typically, this process reduces elements of
an operation template instantiation to their corresponding source code locations,
or interprets the elements in terms of the template attributes given in Table 1.
For example, the structural change described by a template is summarised by
the attributes T.dataStructureKind, T.manipulationKind and T.manipulationPosition.

We now present the essence of our algorithm that generates and injects an-
notations into the source code of the program under analysis (Alg. 1.I and 1.II),
beginning with the generation of recursive predicates. Our algorithm relies on a
few functions that are not presented in detail: annotate inserts VeriFast an-
notations into a C file at a source location determined by the helper functions
before, after and atFuncDef while dfTrace performs an intra-procedural
reaching definition analysis on a C file for a given program variable.

Recursive Predicates. Recall that function contracts for data structure ma-
nipulating functions employ recursive predicates to describe data structure shape.
Each operation template match found by dsOli provides information about a par-
ticular usage of a struct type in the program. As shown in Alg. 1.I, aggregating
information from template attributes T.dataStructureNodeType and T.linkageOffset

with that of τ and σ allows us to construct recursive predicates. These describe
linked-list data structures by making explicit, e.g., which struct field(s) rep-
resent linkage(s) in a list and what form the head and tail elements have. We
then complete the predicate definition by adding further field names from the C
source code, which function as placeholders so that a verification engineer may
extend the annotations to model further aspects of the implementation. To the
right of the vertical bar in lines 7 and 9 of Alg. 1.I we show the annotation tem-
plates predSLLNodes and predSLLDH for an SLL with a fixed head element;
instantiations, highlighted with a grey background, are shown for our running
example. Here, SLLNodes recursively defines the list, while SLL represents a han-
dle for that list. We currently provide such predicate annotation templates for



Algorithm 1 Part I: Recursive predicates

1: generateRecursivePredicates(T, τ, σ,M)
2: switch T.dataStructureKind . Attributes of T are given in Table 1
3: case SLL:
4: let t = τ(T.dataStructureNodeType)
5: let o = σ(T.linkageOffset)
6: let f =getFieldName(t, o)
7: annotate(after(definitionOf(t)), predSLLNodes, t, f)

predicate SLLNodes_Node(struct Node *node, int count) =

node == 0 ? count == 0 : 0 < count

&*& node->Next |-> ?next

// &*& other field chunks...

&*& malloc_block_Node(node)

&*& SLLNodes_Node(next, count-1);

8: if ∃ ( , T ′, , τ ′, σ′) ∈M : T ′.dataStructureKind = SLL ∧
τ ′(T ′.dataStructureNodeType) = t ∧ σ′(T ′.linkageOffset) = o∧
T ′.manipulationPosition = FrontDH

9: annotate(after(definitionOf(t)), predSLLDH, t, f)
predicate SLL_Node(struct Node *list, int count) =

&*& list->Next |-> ?head

// &*& other field chunks...

&*& malloc_block_Node(list)

&*& SLLNodes_Node(head, count);

else
10: annotate(after(definitionOf(t)), predSLL, t, f)
11: case DLL: ...

SLL and DLL data structures with and without head and tail elements. Note
that &*& is VeriFast notation for the separating conjunction operator ∗, and ?x

introduces an existentially quantified logic variable x.

dsOli may identify multiple different access patterns for the same data struc-
ture. For example, there may be functions in a program that always access
elements at the head of a list, making this head element visible, while other
functions modify arbitrary elements of the same list. When generating annota-
tions we always pick the more restrictive option, e.g., a list with a head element,
if at least one operation exposes this characteristic. We expect this to lead to
specifications that more accurately capture program behaviour. This specificity
can be seen in line 8 of Alg. 1.I, where we check over all template matches (stored
in M) to determine the most restrictive predicate.

Function Contracts. VeriFast employs the concept of permission account-
ing [5]. Thus, our generated function contracts give permission to a single func-
tion, or a group of functions that jointly perform an operation, to access a list
and insert or remove an element of that list. Multiple function contracts may be
generated for one function, specifying that this function performs operations on
multiple lists.



Algorithm 1 Part II: Function contracts and inline annotations

12: generateContractsAndInline(T, τ, σ,m, Emanipulated)
13: switch T.dataStructureKind

14: case SLL:
15: let t = τ(T.dataStructureNodeType)
16: let f =getFieldName(t, σ(T.linkageOffset))
17: let ciddiff = m(T.differenceVertex)
18: let cidsstable = {m(tid) : tid ∈ T.stableVertices}
19: let e = (v, w, o) ∈ Emanipulated : o = σ(T.linkageOffset)

∧((v.cid = ciddiff ∧ w.cid ∈ cidsstable)
∨(v.cid ∈ cidsstable ∧ w.cid = ciddiff))

20: if v.cid = ciddiff

21: let list = dfTrace(getVariableOnAssignmentRHS(e.setLoc))
22: else
23: let list = dfTrace(getVariableOnAssignmentLHS(e.setLoc))
24: if T.manipulationKind = Insert
25: annotate(atFuncDef(e.setLoc), ContractInsert, list, t)

requires SLL_Node(S, ?n_Node);

ensures SLL_Node(S, n_Node + 1);

26: annotate(before(efirst.setLoc), Open, list, t)
open SLL_Node(S, n_Node);

27: annotate(after(elast.setLoc), CloseInsert, list, t, f)
close SLLNodes_Node(S->Next, n_Node + 1);

close SLL_Node(S, n_Node + 1);

28: else if T.manipulationKind = Remove . . .
29: case DLL: ...

We first describe the simple case, i.e., where all events that transform a data
structure from Tpre to Tpost are located within one function body and where there
are no further operation templates that match events caused by this function. If
the operation is, e.g., “insert one element into a list”, we are able to specify as
a pre-condition that the function requires permission to a list predicate with n
elements of the type mentioned in the template match. The post-condition will
be that the function returns permission to the list with n + 1 elements to the
caller. A concrete example of each can be seen at line 25 of Alg. 1.II.

To explain Alg. 1.II we introduce the set Emanipulated that comprises the
points-to edges manipulated during the operation that directly contributed to
breaking apart structures observed in GT

pre and forming those in GT
post:

Emanipulated = {(vp, wp, op) ∈ EPk : k ∈ (i..j] ∧ (vp, wp, op).eid ∈ (i..j]

∧ ∃(vt, wt, ot) ∈ (ETpre ∪ ETpost) : m(vt.tid) = vp.cid ∧ σ(ot) = op}

i.e., points-to edges created during the segment, where the source vertices and
offsets of those pointers map to template edges in either GT

pre or GT
post.

The set Emanipulated allows us to determine an entry point to the linked-list
data structure manipulated by an operation. It relies on the computation at
line 19, which locates a stable vertex w that has either an incoming or outgoing



pointer e at the linkage offset to the difference vertex v. As our analysis requires
the source code to contain no more than one assignment statement per line of
code, we may employ e.setLoc to determine the location of that pointer write,
i.e., the location of the program variable that establishes a points-to relationship
between the difference vertex v and some stable vertex w (see Table 1 for details
on stable and difference vertices). In lines 20 to 23 we perform a reaching defi-
nition analysis to determine the function inputs on which the program variable
referring to w is data dependent. There should be one such input variable, either
a function parameter or a global variable, that is of the type associated with the
SLL predicate and contains an SLLNodes predicate for v. We assume this input
variable to be the entry point to the list that is manipulated by the operation
matched. Finally, at line 25, we insert the annotation template ContractInsert,
with instantiations shown for push() from our running example.

Situations in which an operation spans multiple functions or is interleaved
with another operation, are handled by generating contracts that capture the
requirements and results of the separate event sequences that comprise a match.
A typical example for this would be that the (de)allocation site of the difference
vertex is located outside of the function that performs the insert or remove op-
eration on the list. In that case, permissions for the detached node are appended
to the contract so as to pass these permissions to the (de)allocation site.

Inline Annotations. Inline annotations such as loop invariants and open/
close statements make transformations on VeriFast’s symbolic heap explicit
and, thus, provide the proof steps and invariants necessary to automate verifica-
tion. Alg. 1.II produces inline annotations at lines 26 and 27 for annotation tem-
plates Open and CloseInsert. As before, instantiations are shown for our running
example; also consult lines 33, 37 and 38 of Fig. 2 to view these in the context of
push(). By consulting the elements of Emanipulated that occurred first and last,
efirst, elast ∈ Emanipulated with minimum or maximum value of e.eid respectively,
it is possible to determine the most tightly enclosing source lines at which the
operation begins and ends. In the case of traversals we generate auxiliary lemmas
that can be used to segment the list and re-join the segments in subsequent loop
iterations. These are automatically produced from a special type of operation
template, which are designed to recognise the memory transformation associated
with one iteration of common list traversal implementations.

4 Evaluation

We implemented our approach in a prototypic tool-chain that takes as input C
program source files and outputs annotated C source files, which are then passed
to VeriFast. The annotation generator is based on LLVM/Clang [14] for parsing
and annotating the input program and performing data-flow analyses. Our tool-
chain was applied to two examples from textbooks, which we reuse from [21], and
two examples from real-world open-source projects. We provide the output of
dsOli and the automatically generated annotations for each benchmark program
at http://people.cs.kuleuven.be/~jantobias.muehlberg/sefm15/.



The textbook examples, Weiss Stack [20] and Wolf Queue [22], employ SLLs
with a head element. The key difference is that, in the former example, nodes
are always appended and removed at the head position, while the latter example
involves list traversal and insertion at the tail; hence, this later example includes
an auto-generated loop invariant. Our results for these examples are very encour-
aging as all employed data structure manipulating functions could be verified by
VeriFast based on our automatically generated annotations with very few minor
modifications. The generated annotations of Weiss Stack required only one mi-
nor edit (moving a valid open statement by one line). In Wolf Queue, changes
were necessary to correct a variable name in an annotation (“major edit”) and
to introduce new open and close annotations (“added/removed” in Table 2).

For the following two real-world examples, we sliced away code not relating
to functions that were labelled by dsOli to be part of data structure opera-
tions, since currently VeriFast must verify all source code in the source file; an
upcoming release will alleviate this requirement. As a first real-world example,
we extracted a part of the hash table implementation from the Redis key-value
store [17] (dictAddRaw() from src/dict.c). This component inserts a new key
value into a hash bucket, represented by an SLL. The generated annotations
reflect the use of the list, yet additional annotations were required to capture
accessing the nested structs and arrays that contain the hash buckets. Our sec-
ond example originates from the Boa webserver [4]. The analysed component
stores requests in a DLL (src/queue.c), of which we verify the enqueue and
dequeue functions. The latter is challenging as an arbitrary element, passed via
a pointer, is to be removed from the list. Since our operation templates are based
on local changes, sometimes this prevents an association between the removed
element and the list head from being recognised. Nevertheless, the generated an-
notations are valid, but they required us to manually supply assertions to make
some linkages explicit.

Table 2 summarises our results for functions in the examples that manipulate
data structures only. We distinguish between the total amount of annotations
required to verify a function (including those covering, e.g., field initialisation
or input validation) vs. their subset that specifies data structure manipulations
only (i.e., those that are in-scope of our analysis). Annotations are quantified in
terms of separating conjuncts, which loosely correspond to lines of annotations
as given in [16]. We also provide an estimate tfix for the time required to correct
the auto-generated annotations.

The runtime of our annotation generator is no more than a few seconds for all
examples. As dsOli remains a prototype tool, its runtime is in the order of tens-
of-minutes and requires a few GBs of RAM; since these factors depend on trace
length and average points-to graph size, shorter, more representative traces can
significantly reduce the requirements. The repetition-based functional unit iden-
tification strategy was employed for the textbook examples, while the real-world
examples assume that functions perfectly encapsulate operations (Sec. 2.2).

Overall our findings are very encouraging, showing that our tool-chain auto-
matically generates the majority of annotations required to verify the list manip-



Table 2: Annotation results for four sample programs
Numbers of Annotations (given in terms of separation conjuncts)

Example LOC Annot.
req. for
verificat.

Annot.
for DS
Manipul.

Auto-
generated

Minor
Revision
Required

Major
Revision
Required

Added/
Removed

tfix

in
min

Weiss Stack 36 25 25 25 1 0 0 2
→ Predicates 7 14 14 14 0 0 0
→ push() 14 6 6 6 0 0 0
→ pop() 15 5 5 5 1 0 0

Wolf Queue 40 107 102 99 2 1 3 15
→ Predicates 7 65 65 65 0 0 0
→ get() 14 12 7 7 1 0 0
→ put() 19 30 30 27 1 1 3

Redis 31 54 22 21 1 0 1 15
→ Predicates 10 28 16 16 0 0 0
→ dictAddRaw() 21 26 6 5 1 0 1

Boa 29 45 45 28 0 0 17 60
→ Predicates 6 9 9 9 0 0 0
→ enqueue() 9 13 13 8 0 0 5
→ dequeue() 14 23 23 11 0 0 12

ulating functions of our examples with the need of few manual revisions. To assess
the potential benefit of our approach for a verification engineer, Philippaerts et.
al. [16] reports that the typical annotation overhead for VeriFast varies between
0.69 and 2.5 lines of annotation per line of code, and a verification engineer will
verify an average of 2.17 lines of C/low-level Java code per hour. Based on this
data we can conclude that our approach has the potential to save a verification
engineer significant time. For our simple, albeit realistic examples we estimate
time savings between 50% and 80%; our observation is that the auto-generated
annotations form a skeleton that can be enriched by a verification engineer to
verify functional aspects of a program, such as the ordering of list elements.

5 Conclusions and Future Work

By employing the output of dsOli’s dynamic analysis based on machine learning
and pattern recognition, we showed that it is possible to automatically generate
many candidate annotations for the static verification tool VeriFast, which are
suitable for the automated verification of operations that manipulate list-based
data structures. We observed very promising initial results for verifying memory
safety properties and mainly require manual input from the verification engineer
for control paths not affecting data structures, which are out of scope for our
analysis. In future work we aim to support a greater variety of data structures,
including nested data structures that the next version of dsOli will address.
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