
dsOli: Data Structure Operation Location and Identification

David H. White
Software Technologies Group

University of Bamberg, Germany
david.white@swt-bamberg.de

ABSTRACT
Comprehension of C programs can be a difficult task, espe-
cially when they contain pointer-based dynamic data struc-
tures. This paper describes our tool dsOli which aims to
simplify this problem by automatically locating and iden-
tifying data structure operations in C programs, such as
inserting into a singly linked list. The approach is based on
a dynamic analysis that seeks to identify functional units in
a program by observing repetitive temporal patterns caused
by multiple invocations of code fragments. The behaviour
of these functional units is then classified by matching the
associated heap states against templates describing common
data structure operations. The analysis results are available
to the user via XML output, and can also be viewed using
an intuitive GUI which overlays the learnt information on
the program source code.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages—Program analysis

General Terms
Algorithms, Human Factors, Languages

Keywords
Program Comprehension, C Programs, Machine Learning,
Pointer-based Dynamic Data Structures

1. INTRODUCTION
Programs making heavy use of pointers are notoriously

difficult to understand and analyse, especially when the pro-
grammer is given the freedom allowed by languages such as
C (see, e.g., the history of static pointer analysis [1]). For
any reasonably sized program, this will inevitably mean also
understanding the pointer-based dynamic data structures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

In this paper we describe a prototype tool we have devel-
oped for the approach given in [5] to automatically identify
such data structures and their associated operations in C
programs.

The scope of this identification includes not only the struc-
ture (e.g., a singly linked list (SLL)), but also a classification
of the operations that manipulate the data structure (e.g.,
insert to the front of an SLL), and coding style (e.g. null-
termination or usage of an inline header node in a linked
list). By identifying the operations, we are also able to de-
termine the behaviour of the data structure as a whole, e.g.,
an SLL used as a stack or queue. The GUI component of
the tool allows the information learnt to be overlayed on the
source code of the program under analysis, such that the user
can quickly locate and identify data structure operations,
and in addition visualize the affected pointer relationships.

The approach underlying the tool is based on dynamic
analysis; the program is instrumented such that the sequence
of memory states observed during an execution can be re-
covered. By using techniques from machine learning, we
search in this sequence for repeating temporal patterns of,
e.g. pointer writes, that are caused by multiple invocations
of code fragments. If any data structure operations were
executed, then some of these patterns will represent code
fragments of the operations. To identify and classify these,
we employ template matching to examine the memory trans-
formation due to the code fragment.

While the current approach requires a program’s source
code, we intend to extend it to binary programs and in the
limit, obfuscated programs. In these future scenarios, the
utility provided by this type of analysis will be significantly
greater. This is one of the reasons why we locate operations
purely by repetition rather than employing some domain
knowledge. Essentially, we do not require that the syntac-
tic functional units in a program correspond to the semantic
functional units. This method also suits certain C programs;
for example, in performance critical or low-level code, adhoc
operations or inlined code may be preferred over elegant en-
capsulation. To the best of our knowledge, this is the first
tool that targets program comprehension of such data struc-
ture operations in C programs. The closest related work to
our approach is the tool DDT [3] which supports identifi-
cation of operations on a wider range of data structures for
optimization purposes but, in contrast to our work, DDT
requires the interfaces to data structures to be highly struc-
tured, such as those typical in libraries.

In addition to program comprehension, we are employing
the learnt information to aid verification of memory safety

Instrument,
Compile and

Execute

Identify
Operations

Recover Points-to
Sequence

Concrete
Trace
𝐸1, … , 𝐸𝑛 Compute Feature

Abstraction
Identify

Functional Units

Operation
Templates

Classify Data
Structures

XML
Output

GUI

Points-to
Sequence
𝐺1, … , 𝐺𝑛

Program
Source
Code

Feature
Sequence
𝐹1, … , 𝐹𝑛

Potential
Operations

ML

TM

ML

TM

Machine Learning

Template Matching

Figure 1: An overview of the approach implemented in dsOli.

properties, such as those conducted by the tool VeriFast [2].
To this end we are especially interested in the verification of
device drivers, which typically use list-based structures. As
such, our tool supports the identification of pointer-based
data structures such as lists, queues and stacks.

2. APPROACH
An overview of our approach is given in Fig. 1. The anal-

ysis commences from a concrete trace obtained by execut-
ing the C program under analysis. The program is first in-
strumented such that this trace contains program events of
interest to our analysis, for example, pointer writes and dy-
namic memory allocation/deallocation. From the concrete
trace we construct a sequence of points-to graphs. A points-
to graph is a directed graph which describes a subset of the
program state; vertices correspond to heap allocated objects
and pointer variables, while edges represent pointers. Specif-
ically, the points-to graph sequence 〈G1, . . . , Gn〉 is com-
puted for the event sequence 〈E1, . . . , En〉, where graph Gi

describes the points-to structure after Ei is performed.
We will use the SLL data structure in the code of Fig. 3 as

a running example to illustrate our approach. To capture an
event sequence from executions of insert(), all lines with
an alphabetic marker will be instrumented to record the
associated pointer write. In addition, a memory allocation
event will be generated for line A.

2.1 Locating Operation Invocations
We do not assume that data structure operations are well

encapsulated in functions to support the usage scenarios out-
lined in the introduction. Thus, the next stage of the anal-
ysis is concerned with locating sub-sequences of the trace
that potentially correspond to the invocation of data struc-
ture operations. Actually, we attempt to solve a more gen-
eral problem, which is to determine the functional units of a
program. If the data structure operations are well encapsu-
lated by the discovered functional units, then to identify an
operation’s semantics it is only necessary to observe changes
in the points-to graph at the boundaries between functional
units. Of course we will also discover functional units that
are not data structure operations, but we eliminate these by
observing change, or lack of change, in the points-to graphs.

Our approach is based on the observation that programs
are, by nature, highly repetitive due to function calls and
iterative structures. We exploit this property to identify the
functional units of a program by repetition. Indeed, any

program that makes heavy use of dynamic data structures
will need to invoke the interface operations many times. In
addition, there are typically few control flow paths through
operations (e.g., inserting to the front, middle or end of a
linked list) and within those paths there are few variations
(e.g., traversing over a differing number of nodes to reach
an insertion point).

The difficulty is in selecting an abstraction that exposes
the repetition such that we may generalize over similar code
fragments, but does not overly blur the trace which would
result in repetition being observed everywhere. As we are
concerned with pointer-based dynamic data structures, our
abstraction favours these aspects of program state. Essen-
tially our goal is to construct a feature vector Fi for each
points-to graph Gi, which contains elements describing a)
structural properties (e.g., local connectivity changes due to
a pointer write), and b) temporal properties (e.g., how the
current pointer write relates to the previous one).

Continuing the running example, consider invocations of
the SLL insert() function shown in Fig. 3 where the paths
ABC, ADEEFG and ADEEEEFG are taken. Under this ab-
straction, these invocations would likely result in the follow-
ing three sub-sequences appearing in the feature sequence:
π1 = 〈F 1, F 2, F 3〉, π2 = 〈F 1, F 4, F 5, F 5, F 6, F 7〉 and π3 =
〈F 1, F 4, F 5, F 5, F 5, F 5, F 6, F 7〉 where features vectors with
the same superscript have identical values. The key idea
is that although the concrete addresses being operated on
are different in each invocation, the local topology around
those addresses and the sequence of changes remains simi-
lar, and hence recognizable. Note that a simpler abstraction
could use line numbers or program counter value, however,
this would fail to recognize repetition over similar/identical
code fragments and would be completely unsuitable for fu-
ture work on obfuscated code where the instruction memory
may be in constant flux.

To search for repeating patterns we note that compres-
sion locates repetition. We evaluate compression using the
Minimum Description Length (MDL) [5], which minimizes
the size of the hypothesis summed with the size of the fea-
ture sequence encoded given that hypothesis. In our case,
the hypothesis will be a set of patterns used to compress the
sequence. As described above, control flow constructs can
cause variation over invocations of functional units, so we ex-
plicitly model this by allowing the patterns to take a regular
expression form. Returning to our example above, a good
regular expression style pattern for locating occurrences of

0x08
Node*

+0 0x20
Node

0x10
Node

0x30
Node

+4 +4 +4 ...

0x08
Node*

+0 0x20
Node

0x10
Node

+4 +4 ...

Type1+X Type2Type2Type2+Y +Y

Type1+X Type2Type2+Y

0x08
Node*

+0 0x20
Node

0x10
Node

+4 +4 ...

Figure 2: A template that matches inserts to the
front of an SLL (Tpre & Tpost) is shown matched to
a potential operation (Gi, Gj) derived from an invo-
cation of insert in Fig. 3.

the insert() function would be F 1(F 2F 3|F 4F 5∗F 6F 7). We
employ a genetic algorithm to search for the best set of pat-
terns where the fitness function is defined using the above
MDL measure. The search is terminated when no improve-
ment has been observed in the population for 100 genera-
tions. Mutation operators are used to insert/remove pat-
terns from a hypothesis and alter specific patterns by ex-
tending, contracting and adding regular-expression-like op-
erators.

2.2 Identifying Operations & Data Structures
The best set of patterns found during the search is used to

tile and hence segment the points-to sequence into pairs of
points-to graphs, where each pair describes program mem-
ory at the start and end of the segment. We term these pairs
potential operations, as we must still determine the data
structure operation (or absence of operation) performed dur-
ing the segment.

A template is defined for each standard data structure op-
eration, such as those described in a data structure textbook;
the user may also manually add additional templates. For
each potential operation (Gi, Gj), dsOli attempts to match
each template and thus classify the operation observed be-
tween Gi and Gj . Each template consists of two graphs:
Tpre which is matched to Gi and Tpost which is matched to
Gj ; thus, a template captures the points-to transformation
associated with an operation. Both matches must respect a
third mapping between Tpre and Tpost, which specifies the
aspects of the points-to graph that must remain unchanged
during the operation. We must also allow a successful tem-
plate match to override other templates, this is necessary to
deal with, e.g., an SLL template matching part of a doubly
linked list. This is one of the ways in which we prevent false-
positives. For more discussion regarding false-positives and
a comprehensive evaluation, please see [5].

The template graphs in Fig. 2 describe an insertion to the
front of a singly-linked list, and a match is shown with the
potential operation derived from π1 (execution of lines A, B
and C from Fig. 3). Note the additional constraints imposed
by the template on pointer offsets and types. This match, as
well as those resulting from π2, π3 and others are identified
and summarized near the markers 1 , 2 and 3 in Fig. 3.

Lastly, we use the set of operations that manipulated a
data structure to determine its classification. For example,
if only inserts and removals to the front of an SLL were
observed, then it would be named: “SLL used as a stack”.

3. TOOL IMPLEMENTATION
dsOli is divided into a number of sub-modules correspond-

ing to Fig. 1, organized roughly in a pipeline architecture.
It comprises about 20k LOC, over a number of languages
introduced in the following, and took 12 person-months to
develop. As the tool is in the prototype stage, efficiency
is not a key goal and the analysis takes in the order of a
few minutes to tens-of-minutes based on the length of the
program trace and the average size of the points-to graphs.
Nevertheless, it has been run on realistic examples including
parts of the web server Boa (www.boa.org), a linked list in
the Linux kernel (www.kernel.org) and the key-value store
Redis (www.redis.io).

3.1 Instrumentation
We make use of the C Intermediate Language (CIL) [4] to

perform the instrumentation step, which essentially provides
a structured subset of C for the purpose of analyzing and
manipulating C programs. After the input program has been
transformed into CIL, we can access the CIL abstract syntax
tree by the provided OCaml visitor framework. We use this
to insert calls to logging functions at relevant places in the
code. In addition to the previously mentioned instrumenta-
tion for pointer writes and memory allocation/deallocation,
we also track local pointer variables leaving scope to keep
the points-to graphs consistent. We add instrumentation to
record entering/exiting basic blocks, which we use to im-
prove the functional unit location phase. Lastly, we note
that variability introduced at compile time is not an issue
for our approach, since we currently only search for repeti-
tive patterns over a single execution.

It is possible in our tool to perform selective instrumenta-
tion to reduce the amount of superfluous events in the trace,
hence speeding-up and removing unimportant information
from the analysis as well as allowing the user to target spe-
cific scenarios. This can be performed at the file level, at
the function level and at the struct declaration level. By
default, pointer writes are recorded in any struct variable
that contains a self-referential field and any variable which
points to such a struct. This selective instrumentation is en-
abled by extracting type information from the CIL abstract
syntax tree.

3.2 Functional Unit Location
The genetic algorithm that searches for the set of patterns

that best compresses the feature sequence is implemented
in C++ using Evolving Objects (eodev.sourceforge.net).
Since basic blocks have straight line control flow by defini-
tion, it makes sense to treat these as atomic, i.e., a muta-
tion operation may never split a basic block. To speed up the
search, the set of mutations that may be applied to a pattern
are constrained by sub-sequences observed in the feature se-
quence. Due to this restriction it is possible to pre-compute
the set of all possible mutations, which greatly increases the
search speed. Lastly, we note that both the search and pre-
computation phases are trivially parallelizable, so we enable
this by default.

3.3 Identifying Operations
The templates for identifying operations are written in

XML and as such are easily extendable by the user. The
two sub-graphs which comprise a template state how the
structure in the points-to graphs should change from before
to after the operation. In addition, constraints can be placed
on the concrete types of objects and the offset at which a
pointer is stored in an object.

Operations are identified using Prolog. The relevant pair
of points-to graphs are phrased as Prolog clauses and the
template is translated into a query. The SWI-C++ interface
(www.swi-prolog.org/pldoc/package/pl2cpp.html) is em-
ployed to integrate the Prolog component in our application.

3.4 dsOli Output & Usage Scenarios
dsOli provides analysis results to the user via two outputs.

The first is an XML file where section one describes all oc-
currences of operations in the trace and their classifications;
this information is used by the GUI to overlay high-level op-
eration descriptions on the source code. The second section
gives instantiation information for template matches. This
can be used to determine, e.g., which source code line was re-
sponsible for creating a vertex or edge that was matched by
a template. This information is employed by our upcoming
verification interface to automatically construct pre/post-
condition annotations on the source code. The second tool
output is the sequence of points-to graphs, which are de-
scribed in the dot language (www.graphviz.org).

The GUI component is written in Java and uses the Swing
API. It is responsible for overlaying the tool output on the
source code and displaying the appropriate points-to graphs.
Since these graphs may be large, we do not construct indi-
vidual components in the GUI to represent each vertex and
edge. Instead, an svg file is rendered from the dot file and
areas of the displayed image are made click-able to allow for
user interaction (e.g., to select an address).

4. GUI USAGE AND FEATURES
A snapshot of the main component of the GUI is shown

in Fig. 3. A key feature of this display is the sidebar ap-
pearing to the left of the code view which summarizes the
data structure operations discovered by the analysis. For
each operation, a vertical bar is drawn (markers 1 , 2 and
3), titled with the operation’s name, which delimits the
code fragment that comprises the operation. A “prong” (4)
sticking out from the vertical bar toward a particular line of
code indicates that this line of code was involved in at least
one occurrence of the operation. If there exist occurrences of
the operation where differing control flow paths were taken,
then these are merged and represented by a single vertical
bar so long as there exists some overlap between the paths.

If the user clicks on a prong, then all occurrences of the
operation for which the path included that line of code are
displayed in the left-most pane (5). The user may then
select one of the displayed occurrences (6) and step through
the particular events which comprise that occurrence. While
stepping through, the relevant prong and associated line of
source code are both highlighted (4 & 7). Additionally,
in a separate window (Fig. 4), the points-to graphs of the
current and previous event are displayed. In this way, the
user can easily track changes to the points-to graph while
stepping through an occurrence of an operation. This is

especially useful for program comprehension if it is necessary
for the user to investigate the operation’s behaviour in detail.

Vertices in a points-to graph which represent structs are
split into their component fields. For each field, its address,
name and type are shown. To reduce clutter, a null pointer
is shown by shading the relevant address in blue, while an
undefined/untracked value is shown in gray.

To aid the user in keeping track of changes to the points-to
graph, the pointer written in an event and the vertex con-
taining that pointer are highlighted in red. In addition, any
pointer writes within the operation occurrence and prior to
the current write are shown in green. However, if the user
wishes to track changes over several operations, this is in-
sufficient. To solve this problem, we allow the user to se-
lect addresses to be highlighted in all subsequently viewed
points-to graphs. This selection can be done by typing an
address into the boxes labeled “Search” of Fig. 4, or by click-
ing on an address. This set of addresses also allows the user
to automatically zoom the view based on the selected ad-
dresses, which is especially useful for large points-to graphs.

Finally, for any pointer shown in a points-to graph, the
user may click on it and select “source location”, which will
highlight the line of source code responsible for setting this
pointer.

5. CONCLUSION
dsOli enhances comprehension of C programs by allowing

the user to automatically discover and identify pointer-based
dynamic data structure operations. The results of the tool
can be used directly by consulting the XML output or by vi-
sualizing them using the GUI. Future work concerns improv-
ing the approach and tool to handle programs for which the
source code is unavailable, extending the variety of pointer-
based data structures that may be discovered, leveraging the
analysis output for other domains such as pointer verifica-
tion, and improving the scalability.

6. ACKNOWLEDGEMENTS
The author wishes to thank Felix Härer and Steffen Witt

for developing the GUI component and Gerald Lüttgen for
his input on the approach. Part of this work was supported
under grant no. LU 1748/4-1 from the DFG.

7. REFERENCES
[1] M. Hind. Pointer analysis: Haven’t we solved this

problem yet? In PASTE, pages 54–61. ACM, 2001.

[2] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels,
W. Penninckx, and F. Piessens. VeriFast: A powerful,
sound, predictable, fast verifier for C and java. In NFM,
volume 6617 of LNCS, pages 41–55. Springer, 2011.

[3] C. Jung and N. Clark. DDT: Design and evaluation of
a dynamic program analysis for optimizing data
structure usage. In MICRO, pages 56–66. ACM, 2009.

[4] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer.
CIL: Intermediate language and tools for analysis and
transformation of C programs. In CC, volume 2304 of
LNCS, pages 213–228. Springer, 2002.

[5] D. H. White and G. LÃijttgen. Identifying dynamic
data structures by learning evolving patterns in
memory. In TACAS, volume 7795 of LNCS, pages
354–369. Springer, 2013.

Figure 3: The code view of the GUI with operation summaries shown in the middle (markers 1 , 2 and
3) and occurrences on the left (5). Note the highlighted source code line 7 as the user steps through
an occurrence 6 of SLL Insert Middle 2 . The vertical bar at marker 2 extending upwards out of view
is due to the functional unit location algorithm grouping a small additional part of the program with some
invocations of this operation, which is a natural artifact of our approximate location algorithm. Nevertheless,
this imprecise yet powerful technique still allows operations to typically be correctly identified, as is the case
here. For additional discussion on this, please consult [5].

Figure 4: The secondary GUI window showing the points-to graphs for both the current event (right) and
previous event (left). The current event was due to the execution of line 143 in Fig. 3, which had the effect
of making a connection between the newly allocated node and the node prior to its insertion position. Note
the two selected addresses in the boxes at the top middle (shown in yellow and green), which have been used
to automatically zoom the relevant section of the points-to graph. When viewed in color, orange indicates
heap allocated memory and pink indicates stack allocated memory. A red highlight shows the pointer and
object changed in a specific event, while a green highlight shows prior changes to pointers and objects during
the occurrence currently being viewed.

